Loading…

Self-Ignition Model of a Hydrogen Air Mixture

A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical descript...

Full description

Saved in:
Bibliographic Details
Published in:Combustion, explosion, and shock waves explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392
Main Author: Shults, O. V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563
cites
container_end_page 392
container_issue 4
container_start_page 385
container_title Combustion, explosion, and shock waves
container_volume 54
creator Shults, O. V.
description A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.
doi_str_mv 10.1134/S0010508218040019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088342588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088342588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWP0B3gKeV2d2N3H3WIraQouH6jkku5OQUrN1NwH7702J4EG8zAy8L-YxdotwjyjVwxYAIQMtUIMab3PGEsweJddSZecsOcH8hF-yqxh3ACCEyhPGt7Sv-arp2r71Xbrxjvapr9MyXR5d8A116bwN6ab96odA1-yiLveRbn72jL0_P70tlnz9-rJazNfcSsx7biuXO5QWtdTGugpUrQm1oFJjZZWTSpuMtKYSVC6NMtZUNaF01kmDWS5n7G7yPQT_OVDsi50fQjdGFgL0-JLIxjljOLFs8DEGqotDaD_KcCwQilMrxZ9WRo2YNHHkdg2FX-f_Rd9DVmEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088342588</pqid></control><display><type>article</type><title>Self-Ignition Model of a Hydrogen Air Mixture</title><source>Springer Nature</source><creator>Shults, O. V.</creator><creatorcontrib>Shults, O. V.</creatorcontrib><description>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508218040019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic flow ; Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Heating rate ; Ignition limits ; Mathematical models ; Numerical analysis ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration ; Water vapor</subject><ispartof>Combustion, explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shults, O. V.</creatorcontrib><title>Self-Ignition Model of a Hydrogen Air Mixture</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</description><subject>Adiabatic flow</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heating rate</subject><subject>Ignition limits</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><subject>Water vapor</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWP0B3gKeV2d2N3H3WIraQouH6jkku5OQUrN1NwH7702J4EG8zAy8L-YxdotwjyjVwxYAIQMtUIMab3PGEsweJddSZecsOcH8hF-yqxh3ACCEyhPGt7Sv-arp2r71Xbrxjvapr9MyXR5d8A116bwN6ab96odA1-yiLveRbn72jL0_P70tlnz9-rJazNfcSsx7biuXO5QWtdTGugpUrQm1oFJjZZWTSpuMtKYSVC6NMtZUNaF01kmDWS5n7G7yPQT_OVDsi50fQjdGFgL0-JLIxjljOLFs8DEGqotDaD_KcCwQilMrxZ9WRo2YNHHkdg2FX-f_Rd9DVmEZ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Shults, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Self-Ignition Model of a Hydrogen Air Mixture</title><author>Shults, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heating rate</topic><topic>Ignition limits</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shults, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shults, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Ignition Model of a Hydrogen Air Mixture</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>385</spage><epage>392</epage><pages>385-392</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508218040019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2088342588
source Springer Nature
subjects Adiabatic flow
Classical and Continuum Physics
Classical Mechanics
Control
Dynamical Systems
Engineering
Heating rate
Ignition limits
Mathematical models
Numerical analysis
Physical Chemistry
Physics
Physics and Astronomy
Vibration
Water vapor
title Self-Ignition Model of a Hydrogen Air Mixture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Ignition%20Model%20of%20a%20Hydrogen%20Air%20Mixture&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Shults,%20O.%20V.&rft.date=2018-07-01&rft.volume=54&rft.issue=4&rft.spage=385&rft.epage=392&rft.pages=385-392&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508218040019&rft_dat=%3Cproquest_cross%3E2088342588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088342588&rft_id=info:pmid/&rfr_iscdi=true