Loading…
Self-Ignition Model of a Hydrogen Air Mixture
A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical descript...
Saved in:
Published in: | Combustion, explosion, and shock waves explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563 |
---|---|
cites | |
container_end_page | 392 |
container_issue | 4 |
container_start_page | 385 |
container_title | Combustion, explosion, and shock waves |
container_volume | 54 |
creator | Shults, O. V. |
description | A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described. |
doi_str_mv | 10.1134/S0010508218040019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088342588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088342588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWP0B3gKeV2d2N3H3WIraQouH6jkku5OQUrN1NwH7702J4EG8zAy8L-YxdotwjyjVwxYAIQMtUIMab3PGEsweJddSZecsOcH8hF-yqxh3ACCEyhPGt7Sv-arp2r71Xbrxjvapr9MyXR5d8A116bwN6ab96odA1-yiLveRbn72jL0_P70tlnz9-rJazNfcSsx7biuXO5QWtdTGugpUrQm1oFJjZZWTSpuMtKYSVC6NMtZUNaF01kmDWS5n7G7yPQT_OVDsi50fQjdGFgL0-JLIxjljOLFs8DEGqotDaD_KcCwQilMrxZ9WRo2YNHHkdg2FX-f_Rd9DVmEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088342588</pqid></control><display><type>article</type><title>Self-Ignition Model of a Hydrogen Air Mixture</title><source>Springer Nature</source><creator>Shults, O. V.</creator><creatorcontrib>Shults, O. V.</creatorcontrib><description>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508218040019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic flow ; Classical and Continuum Physics ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Heating rate ; Ignition limits ; Mathematical models ; Numerical analysis ; Physical Chemistry ; Physics ; Physics and Astronomy ; Vibration ; Water vapor</subject><ispartof>Combustion, explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shults, O. V.</creatorcontrib><title>Self-Ignition Model of a Hydrogen Air Mixture</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</description><subject>Adiabatic flow</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heating rate</subject><subject>Ignition limits</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Vibration</subject><subject>Water vapor</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWP0B3gKeV2d2N3H3WIraQouH6jkku5OQUrN1NwH7702J4EG8zAy8L-YxdotwjyjVwxYAIQMtUIMab3PGEsweJddSZecsOcH8hF-yqxh3ACCEyhPGt7Sv-arp2r71Xbrxjvapr9MyXR5d8A116bwN6ab96odA1-yiLveRbn72jL0_P70tlnz9-rJazNfcSsx7biuXO5QWtdTGugpUrQm1oFJjZZWTSpuMtKYSVC6NMtZUNaF01kmDWS5n7G7yPQT_OVDsi50fQjdGFgL0-JLIxjljOLFs8DEGqotDaD_KcCwQilMrxZ9WRo2YNHHkdg2FX-f_Rd9DVmEZ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Shults, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Self-Ignition Model of a Hydrogen Air Mixture</title><author>Shults, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heating rate</topic><topic>Ignition limits</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Vibration</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shults, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shults, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Ignition Model of a Hydrogen Air Mixture</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>385</spage><epage>392</epage><pages>385-392</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>A numerical analysis of self-ignition of a hydrogen–air–water vapor mixture at different initial pressures is carried out. The results of this analysis are used to make a shortened list of reactions that make the largest contribution to process rate during induction. A simplified analytical description of the system state before self-ignition, which makes it possible to calculate the thermal power and adiabatic heating rate of the system, is presented. A method for estimating the self-ignition limits from the adiabatic heating rate of the mixture is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508218040019</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2018-07, Vol.54 (4), p.385-392 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_proquest_journals_2088342588 |
source | Springer Nature |
subjects | Adiabatic flow Classical and Continuum Physics Classical Mechanics Control Dynamical Systems Engineering Heating rate Ignition limits Mathematical models Numerical analysis Physical Chemistry Physics Physics and Astronomy Vibration Water vapor |
title | Self-Ignition Model of a Hydrogen Air Mixture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Ignition%20Model%20of%20a%20Hydrogen%20Air%20Mixture&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Shults,%20O.%20V.&rft.date=2018-07-01&rft.volume=54&rft.issue=4&rft.spage=385&rft.epage=392&rft.pages=385-392&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508218040019&rft_dat=%3Cproquest_cross%3E2088342588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-cbd6d13c18389cdb04f8e182ea81bc4d34895e88ea0463949c9bfe13dcd391563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088342588&rft_id=info:pmid/&rfr_iscdi=true |