Loading…

Saturable absorption by carbon nanotubes on silica microtoroids

Saturable absorption is a key technology for shaping the waveform of light such as in passive mode-locking. The combination of high-Q optical microcavities with a saturable absorber allows stable lasing and soliton formation. This work describes saturable absorption by carbon nanotubes (CNTs) on sil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-06, Vol.123 (23)
Main Authors: Kumagai, Tsutaru, Hirota, Naoya, Sato, Katsuya, Namiki, Koki, Maki, Hideyuki, Tanabe, Takasumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Saturable absorption is a key technology for shaping the waveform of light such as in passive mode-locking. The combination of high-Q optical microcavities with a saturable absorber allows stable lasing and soliton formation. This work describes saturable absorption by carbon nanotubes (CNTs) on silica microtoroids. CNTs, which are saturable absorbers capable of a fast response time and broadband absorption, were grown on silica microtoroids by chemical vapor deposition (CVD). Raman spectroscopy revealed that the CNTs are in good quality (G/D ratio ∼ 7) and about 1.0 nm in diameter, thus confirming that a sample for use in the telecommunication band can be prepared by CVD. A counter-propagating pump-probe experiment enabled us to investigate the characteristics of CNTs as saturable absorbers while suppressing thermo-optic bistability in a microcavity system. The results revealed a saturable absorption coefficient of 0.042 cm−1, a saturable intensity of 25.9 MW/cm2, and a modulation depth of 28%. This is the first step toward the demonstration of the robust mode-locking in a silica microtoroid consisting of CNTs.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5025885