Loading…

Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis

Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and Cu A sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-direc...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2018-08, Vol.9 (32), p.6692-672
Main Authors: Espinoza-Cara, Andrés, Zitare, Ulises, Alvarez-Paggi, Damián, Klinke, Sebastián, Otero, Lisandro H, Murgida, Daniel H, Vila, Alejandro J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3
cites cdi_FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3
container_end_page 672
container_issue 32
container_start_page 6692
container_title Chemical science (Cambridge)
container_volume 9
creator Espinoza-Cara, Andrés
Zitare, Ulises
Alvarez-Paggi, Damián
Klinke, Sebastián
Otero, Lisandro H
Murgida, Daniel H
Vila, Alejandro J
description Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and Cu A sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a Cu A scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature. Loop directed mutagenesis leads to a cupredoxin withthe strongest copper-thiolate bond known to date, high reduction potential and imidazole binding properties.
doi_str_mv 10.1039/c8sc01444b
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2088365999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088365999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3</originalsourceid><addsrcrecordid>eNpVkc9LHTEQx0OpVLFevFsCvQnb5sdudnMR2oe1BcGD9uIlTJLZZ2Rfsk12pf73bvv02c5lZpgP3xnmS8gxZ584k_qz64pjvK5r-4YcCFbzSjVSv93Vgu2To1Lu2RJS8ka078i-ZJIzxeQBuT2P6xARc4hrCtSGfo5uCinCQF0aR8y0hAlpiHS6Q-rmMaNPv5e2T4On9pEOKY2VDxndhJ5u5gnWGLGE8p7s9TAUPHrOh-Tnt_Ob1ffq8urix-rLZeVq0U0VCgCvXQfQAHadtj1a7AGEAq5aWUvfKtsASIG-dr1ueyFasXDK-lo3Vh6Ss63uONsNeodxyjCYMYcN5EeTIJj_JzHcmXV6MIrzRgm1CHx8Fsjp14xlMvdpzssHihGs66RqtNYLdbqlXE6lZOx3Gzgzf6wwq-569deKrwv84d-bdujL4xfgZAvk4nbTVy_lEyA9kIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088365999</pqid></control><display><type>article</type><title>Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis</title><source>PubMed Central</source><creator>Espinoza-Cara, Andrés ; Zitare, Ulises ; Alvarez-Paggi, Damián ; Klinke, Sebastián ; Otero, Lisandro H ; Murgida, Daniel H ; Vila, Alejandro J</creator><creatorcontrib>Espinoza-Cara, Andrés ; Zitare, Ulises ; Alvarez-Paggi, Damián ; Klinke, Sebastián ; Otero, Lisandro H ; Murgida, Daniel H ; Vila, Alejandro J</creatorcontrib><description>Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and Cu A sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a Cu A scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature. Loop directed mutagenesis leads to a cupredoxin withthe strongest copper-thiolate bond known to date, high reduction potential and imidazole binding properties.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc01444b</identifier><identifier>PMID: 30310603</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Chemistry ; Copper ; Electron transfer ; Electronic structure ; Hydrogen bonds ; Imidazole ; Ligands ; Mutagenesis ; Proteins ; Scaffolds ; Strong interactions (field theory)</subject><ispartof>Chemical science (Cambridge), 2018-08, Vol.9 (32), p.6692-672</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3</citedby><cites>FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3</cites><orcidid>0000-0002-1507-9685 ; 0000-0003-0248-6916 ; 0000-0002-5448-5483 ; 0000-0002-8777-0870 ; 0000-0001-5173-0183 ; 0000-0003-0500-4513 ; 0000-0002-7978-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30310603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinoza-Cara, Andrés</creatorcontrib><creatorcontrib>Zitare, Ulises</creatorcontrib><creatorcontrib>Alvarez-Paggi, Damián</creatorcontrib><creatorcontrib>Klinke, Sebastián</creatorcontrib><creatorcontrib>Otero, Lisandro H</creatorcontrib><creatorcontrib>Murgida, Daniel H</creatorcontrib><creatorcontrib>Vila, Alejandro J</creatorcontrib><title>Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and Cu A sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a Cu A scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature. Loop directed mutagenesis leads to a cupredoxin withthe strongest copper-thiolate bond known to date, high reduction potential and imidazole binding properties.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Hydrogen bonds</subject><subject>Imidazole</subject><subject>Ligands</subject><subject>Mutagenesis</subject><subject>Proteins</subject><subject>Scaffolds</subject><subject>Strong interactions (field theory)</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc9LHTEQx0OpVLFevFsCvQnb5sdudnMR2oe1BcGD9uIlTJLZZ2Rfsk12pf73bvv02c5lZpgP3xnmS8gxZ584k_qz64pjvK5r-4YcCFbzSjVSv93Vgu2To1Lu2RJS8ka078i-ZJIzxeQBuT2P6xARc4hrCtSGfo5uCinCQF0aR8y0hAlpiHS6Q-rmMaNPv5e2T4On9pEOKY2VDxndhJ5u5gnWGLGE8p7s9TAUPHrOh-Tnt_Ob1ffq8urix-rLZeVq0U0VCgCvXQfQAHadtj1a7AGEAq5aWUvfKtsASIG-dr1ueyFasXDK-lo3Vh6Ss63uONsNeodxyjCYMYcN5EeTIJj_JzHcmXV6MIrzRgm1CHx8Fsjp14xlMvdpzssHihGs66RqtNYLdbqlXE6lZOx3Gzgzf6wwq-569deKrwv84d-bdujL4xfgZAvk4nbTVy_lEyA9kIs</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Espinoza-Cara, Andrés</creator><creator>Zitare, Ulises</creator><creator>Alvarez-Paggi, Damián</creator><creator>Klinke, Sebastián</creator><creator>Otero, Lisandro H</creator><creator>Murgida, Daniel H</creator><creator>Vila, Alejandro J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1507-9685</orcidid><orcidid>https://orcid.org/0000-0003-0248-6916</orcidid><orcidid>https://orcid.org/0000-0002-5448-5483</orcidid><orcidid>https://orcid.org/0000-0002-8777-0870</orcidid><orcidid>https://orcid.org/0000-0001-5173-0183</orcidid><orcidid>https://orcid.org/0000-0003-0500-4513</orcidid><orcidid>https://orcid.org/0000-0002-7978-3233</orcidid></search><sort><creationdate>20180828</creationdate><title>Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis</title><author>Espinoza-Cara, Andrés ; Zitare, Ulises ; Alvarez-Paggi, Damián ; Klinke, Sebastián ; Otero, Lisandro H ; Murgida, Daniel H ; Vila, Alejandro J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Hydrogen bonds</topic><topic>Imidazole</topic><topic>Ligands</topic><topic>Mutagenesis</topic><topic>Proteins</topic><topic>Scaffolds</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza-Cara, Andrés</creatorcontrib><creatorcontrib>Zitare, Ulises</creatorcontrib><creatorcontrib>Alvarez-Paggi, Damián</creatorcontrib><creatorcontrib>Klinke, Sebastián</creatorcontrib><creatorcontrib>Otero, Lisandro H</creatorcontrib><creatorcontrib>Murgida, Daniel H</creatorcontrib><creatorcontrib>Vila, Alejandro J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza-Cara, Andrés</au><au>Zitare, Ulises</au><au>Alvarez-Paggi, Damián</au><au>Klinke, Sebastián</au><au>Otero, Lisandro H</au><au>Murgida, Daniel H</au><au>Vila, Alejandro J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>9</volume><issue>32</issue><spage>6692</spage><epage>672</epage><pages>6692-672</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and Cu A sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a Cu A scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature. Loop directed mutagenesis leads to a cupredoxin withthe strongest copper-thiolate bond known to date, high reduction potential and imidazole binding properties.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30310603</pmid><doi>10.1039/c8sc01444b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1507-9685</orcidid><orcidid>https://orcid.org/0000-0003-0248-6916</orcidid><orcidid>https://orcid.org/0000-0002-5448-5483</orcidid><orcidid>https://orcid.org/0000-0002-8777-0870</orcidid><orcidid>https://orcid.org/0000-0001-5173-0183</orcidid><orcidid>https://orcid.org/0000-0003-0500-4513</orcidid><orcidid>https://orcid.org/0000-0002-7978-3233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2018-08, Vol.9 (32), p.6692-672
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_2088365999
source PubMed Central
subjects Catalysis
Chemistry
Copper
Electron transfer
Electronic structure
Hydrogen bonds
Imidazole
Ligands
Mutagenesis
Proteins
Scaffolds
Strong interactions (field theory)
title Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20bifunctional%20copper%20site%20in%20the%20cupredoxin%20fold%20by%20loop-directed%20mutagenesis&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Espinoza-Cara,%20Andr%C3%A9s&rft.date=2018-08-28&rft.volume=9&rft.issue=32&rft.spage=6692&rft.epage=672&rft.pages=6692-672&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc01444b&rft_dat=%3Cproquest_pubme%3E2088365999%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e2aad9c8aa5ae889bfebefaa26a167343d76b5aa32ed4cf97f227289b6bd495b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088365999&rft_id=info:pmid/30310603&rfr_iscdi=true