Loading…
Plane torsion waves in quadratic gravitational theories
The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical...
Saved in:
Published in: | arXiv.org 1998-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Babourova, O V Frolov, B N Klimova, E A |
description | The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms. |
doi_str_mv | 10.48550/arxiv.9805005 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088457884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088457884</sourcerecordid><originalsourceid>FETCH-proquest_journals_20884578843</originalsourceid><addsrcrecordid>eNqNi7EOgjAURRsTE4myOjdxBh8tlTobjaODO3nBqiWklb6Cfr4MfoDLPWc4l7F1AXmplYItho8d870GBaBmLBFSFpkuhViwlKgFALGrhFIyYdWlQ2d49IGsd_yNoyFuHe8HvAWMtuGPgKONk3qHHY9P44M1tGLzO3Zk0h-XbHM6Xg_n7BV8PxiKdeuHMD2oFqB1qapp5H_VF3xbPBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088457884</pqid></control><display><type>article</type><title>Plane torsion waves in quadratic gravitational theories</title><source>Publicly Available Content Database</source><creator>Babourova, O V ; Frolov, B N ; Klimova, E A</creator><creatorcontrib>Babourova, O V ; Frolov, B N ; Klimova, E A</creatorcontrib><description>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9805005</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cartan space ; Commutators ; Differential equations ; Gravitation theory ; Gravitational fields ; Mathematical analysis ; Operators (mathematics) ; Plane waves ; Torsion</subject><ispartof>arXiv.org, 1998-05</ispartof><rights>1998. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088457884?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Babourova, O V</creatorcontrib><creatorcontrib>Frolov, B N</creatorcontrib><creatorcontrib>Klimova, E A</creatorcontrib><title>Plane torsion waves in quadratic gravitational theories</title><title>arXiv.org</title><description>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</description><subject>Cartan space</subject><subject>Commutators</subject><subject>Differential equations</subject><subject>Gravitation theory</subject><subject>Gravitational fields</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Plane waves</subject><subject>Torsion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EOgjAURRsTE4myOjdxBh8tlTobjaODO3nBqiWklb6Cfr4MfoDLPWc4l7F1AXmplYItho8d870GBaBmLBFSFpkuhViwlKgFALGrhFIyYdWlQ2d49IGsd_yNoyFuHe8HvAWMtuGPgKONk3qHHY9P44M1tGLzO3Zk0h-XbHM6Xg_n7BV8PxiKdeuHMD2oFqB1qapp5H_VF3xbPBY</recordid><startdate>19980503</startdate><enddate>19980503</enddate><creator>Babourova, O V</creator><creator>Frolov, B N</creator><creator>Klimova, E A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980503</creationdate><title>Plane torsion waves in quadratic gravitational theories</title><author>Babourova, O V ; Frolov, B N ; Klimova, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20884578843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Cartan space</topic><topic>Commutators</topic><topic>Differential equations</topic><topic>Gravitation theory</topic><topic>Gravitational fields</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Plane waves</topic><topic>Torsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Babourova, O V</creatorcontrib><creatorcontrib>Frolov, B N</creatorcontrib><creatorcontrib>Klimova, E A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babourova, O V</au><au>Frolov, B N</au><au>Klimova, E A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plane torsion waves in quadratic gravitational theories</atitle><jtitle>arXiv.org</jtitle><date>1998-05-03</date><risdate>1998</risdate><eissn>2331-8422</eissn><abstract>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9805005</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1998-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088457884 |
source | Publicly Available Content Database |
subjects | Cartan space Commutators Differential equations Gravitation theory Gravitational fields Mathematical analysis Operators (mathematics) Plane waves Torsion |
title | Plane torsion waves in quadratic gravitational theories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plane%20torsion%20waves%20in%20quadratic%20gravitational%20theories&rft.jtitle=arXiv.org&rft.au=Babourova,%20O%20V&rft.date=1998-05-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9805005&rft_dat=%3Cproquest%3E2088457884%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20884578843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088457884&rft_id=info:pmid/&rfr_iscdi=true |