Loading…

Plane torsion waves in quadratic gravitational theories

The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1998-05
Main Authors: Babourova, O V, Frolov, B N, Klimova, E A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Babourova, O V
Frolov, B N
Klimova, E A
description The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.
doi_str_mv 10.48550/arxiv.9805005
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088457884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088457884</sourcerecordid><originalsourceid>FETCH-proquest_journals_20884578843</originalsourceid><addsrcrecordid>eNqNi7EOgjAURRsTE4myOjdxBh8tlTobjaODO3nBqiWklb6Cfr4MfoDLPWc4l7F1AXmplYItho8d870GBaBmLBFSFpkuhViwlKgFALGrhFIyYdWlQ2d49IGsd_yNoyFuHe8HvAWMtuGPgKONk3qHHY9P44M1tGLzO3Zk0h-XbHM6Xg_n7BV8PxiKdeuHMD2oFqB1qapp5H_VF3xbPBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088457884</pqid></control><display><type>article</type><title>Plane torsion waves in quadratic gravitational theories</title><source>Publicly Available Content Database</source><creator>Babourova, O V ; Frolov, B N ; Klimova, E A</creator><creatorcontrib>Babourova, O V ; Frolov, B N ; Klimova, E A</creatorcontrib><description>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9805005</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cartan space ; Commutators ; Differential equations ; Gravitation theory ; Gravitational fields ; Mathematical analysis ; Operators (mathematics) ; Plane waves ; Torsion</subject><ispartof>arXiv.org, 1998-05</ispartof><rights>1998. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088457884?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Babourova, O V</creatorcontrib><creatorcontrib>Frolov, B N</creatorcontrib><creatorcontrib>Klimova, E A</creatorcontrib><title>Plane torsion waves in quadratic gravitational theories</title><title>arXiv.org</title><description>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</description><subject>Cartan space</subject><subject>Commutators</subject><subject>Differential equations</subject><subject>Gravitation theory</subject><subject>Gravitational fields</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Plane waves</subject><subject>Torsion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EOgjAURRsTE4myOjdxBh8tlTobjaODO3nBqiWklb6Cfr4MfoDLPWc4l7F1AXmplYItho8d870GBaBmLBFSFpkuhViwlKgFALGrhFIyYdWlQ2d49IGsd_yNoyFuHe8HvAWMtuGPgKONk3qHHY9P44M1tGLzO3Zk0h-XbHM6Xg_n7BV8PxiKdeuHMD2oFqB1qapp5H_VF3xbPBY</recordid><startdate>19980503</startdate><enddate>19980503</enddate><creator>Babourova, O V</creator><creator>Frolov, B N</creator><creator>Klimova, E A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980503</creationdate><title>Plane torsion waves in quadratic gravitational theories</title><author>Babourova, O V ; Frolov, B N ; Klimova, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20884578843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Cartan space</topic><topic>Commutators</topic><topic>Differential equations</topic><topic>Gravitation theory</topic><topic>Gravitational fields</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Plane waves</topic><topic>Torsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Babourova, O V</creatorcontrib><creatorcontrib>Frolov, B N</creatorcontrib><creatorcontrib>Klimova, E A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babourova, O V</au><au>Frolov, B N</au><au>Klimova, E A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plane torsion waves in quadratic gravitational theories</atitle><jtitle>arXiv.org</jtitle><date>1998-05-03</date><risdate>1998</risdate><eissn>2331-8422</eissn><abstract>The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9805005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1998-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088457884
source Publicly Available Content Database
subjects Cartan space
Commutators
Differential equations
Gravitation theory
Gravitational fields
Mathematical analysis
Operators (mathematics)
Plane waves
Torsion
title Plane torsion waves in quadratic gravitational theories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plane%20torsion%20waves%20in%20quadratic%20gravitational%20theories&rft.jtitle=arXiv.org&rft.au=Babourova,%20O%20V&rft.date=1998-05-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9805005&rft_dat=%3Cproquest%3E2088457884%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20884578843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088457884&rft_id=info:pmid/&rfr_iscdi=true