Loading…

The Radio Continuum of the Metal-Deficient Blue Compact Dwarf Galaxy SBS0335-052

We present new Very Large Array observations at five frequencies, from 1.4 to 22GHz, of the extremely low-metallicity blue compact dwarf SBS0335-052. The radio spectrum shows considerable absorption at 1.49GHz, and a composite thermal+non-thermal slope. After fitting the data with a variety of model...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2004-01
Main Authors: Hunt, Leslie K, Dyer, Kristy K, Thuan, Trinh X, Ulvestad, James S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present new Very Large Array observations at five frequencies, from 1.4 to 22GHz, of the extremely low-metallicity blue compact dwarf SBS0335-052. The radio spectrum shows considerable absorption at 1.49GHz, and a composite thermal+non-thermal slope. After fitting the data with a variety of models, we find the best-fitting geometry to be one with free-free absorption homogeneously intermixed with the emission of both thermal and non-thermal components. The best-fitting model gives an an emission measure EM ~ 8x10^7pc cm^{-6} and a diameter of the radio-emitting region D ~17pc. The inferred density is n_e ~ 2000 cm^{-3}. The thermal emission comes from an ensemble of \~9000 O7 stars, with a massive star-formation rate (>=5Msun) of 0.13-0.15 yr^{-1}, and a supernova rate of 0.006 yr^{-1}. We find evidence for ionized gas emission from stellar winds, since the observed Bralpha line flux significantly exceeds that inferred from the thermal radio emission. The non-thermal fraction at 5GHz is ~0.7, corresponding to a non-thermal luminosity of ~2x10^{20} W Hz^{-1}. We attribute the non-thermal radio emission to an ensemble of compact SN remnants expanding in a dense interstellar medium, and derive an equipartition magnetic field of ~0.6-1 mG, and a pressure of \~3x10^{-8}-1x10^{-7} dyne cm^{-2}. If the radio properties of SBS0335-052 are representative of star formation in extremely low-metallicity environments, derivations of the star formation rate from the radio continuum in high redshift primordial galaxies need to be reconsidered. Moreover, photometric redshifts inferred from ``standard'' spectral energy distributions could be incorrect.
ISSN:2331-8422
DOI:10.48550/arxiv.0401394