Loading…

Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets

The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69–4.97 eV, the lowest ππ* excited state, S1, was accessed and its...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2018-05, Vol.148 (19), p.194303-194303
Main Authors: Williams, Holly L., Erickson, Blake A., Neumark, Daniel M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69–4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69–4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ∼210 to 250 fs in adenosine and ∼220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ∼320 fs and was measureable only in adenosine monophosphate.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5027258