Loading…
Dissipation effects in superconducting heterostructures with tungsten nanorods as weak links
Thin-film hybrid heterostructures formed by superconducting molybdenum-rhenium-alloy films with a critical temperature of about 9 K and nanoscale silicon-based semiconducting interlayers with metallic tungsten nanorods have been fabricated and studied. Current-voltage characteristics of the junction...
Saved in:
Published in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2018-03, Vol.44 (3), p.252-256 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thin-film hybrid heterostructures formed by superconducting molybdenum-rhenium-alloy films with a critical temperature of about 9 K and nanoscale silicon-based semiconducting interlayers with metallic tungsten nanorods have been fabricated and studied. Current-voltage characteristics of the junctions were measured at 4.2 K and under influence of 11 GHz microwave irradiation. The evidence of a quasi-one-dimensional transport through the tungsten weak links disrupted by phase-slip centers was revealed in MoRe/doped Si/MoRe trilayers under irradiation by a high-frequency field. Also, measured current-voltage characteristics of five-layer MoRe/doped Si/MoRe/doped Si/MoRe devices exhibit a strong influence of a dissipation state in the MoRe interlayer. Namely, the switching from a superconducting state with low dissipation to a finite-conductance regime can be initiated by the emergence of an extra phase-slip center in the MoRe interlayer. Possible physical mechanisms of the two findings are discussed. |
---|---|
ISSN: | 1063-777X 1090-6517 |
DOI: | 10.1063/1.5024546 |