Loading…
Multiple points of equilibrium for active magnetic regenerators using first order magnetocaloric material
First order transition material (FOM) usually exhibits magnetocaloric effects in a narrow temperature range which complicates their use in an active magnetic regenerator (AMR) refrigerator. In addition, the magnetocaloric effect in first order materials can vary with field and temperature history of...
Saved in:
Published in: | Journal of applied physics 2018-05, Vol.123 (20) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First order transition material (FOM) usually exhibits magnetocaloric effects in a narrow temperature range which complicates their use in an active magnetic regenerator (AMR) refrigerator. In addition, the magnetocaloric effect in first order materials can vary with field and temperature history of the material. This study examines the behavior of a MnFe(P,Si) FOM sample in an AMR cycle using a numerical model and experimental measurements. For certain operating conditions, multiple points of equilibrium (MPE) exist for a fixed hot rejection temperature. Stable and unstable points of equilibriums (PEs) are identified and the impacts of heat loads, operating conditions, and configuration losses on the number of PEs are discussed. It is shown that the existence of multiple PEs can affect the performance of an AMR significantly for certain operating conditions. In addition, the points where MPEs exist appear to be linked to the device itself, not just the material, suggesting the need to layer a regenerator in a way that avoids MPE conditions and to layer with a specific device in mind. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5026633 |