Loading…

Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites

ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, micr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of refractory metals & hard materials 2018-09, Vol.75, p.10
Main Authors: Parvizi, Soroush, Ahmadi, Zohre, Zamharir, Mehran Jaberi, Asl, Mehdi Shahedi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 10
container_title International journal of refractory metals & hard materials
container_volume 75
creator Parvizi, Soroush
Ahmadi, Zohre
Zamharir, Mehran Jaberi
Asl, Mehdi Shahedi
description ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, microstructure and mechanical properties of ZrB2-based ceramic matrix composites. Spark plasma sintering at 1900 °C for 7 min under 40 MPa resulted in fully dense ZS and ZSG samples but a relative density of 96.1% was achieved for Z sample. The growth of ZrB2 grains was effectively decelerated by addition of submicron SiC particles and graphite nano-flakes. Hardness values of 13.1, 19.5 and 16.6 GPa were measured for Z, ZS and ZSG samples, respectively, which verify the hardening effect of SiC and softening effect of graphite in ZrB2-based composites. By the simultaneous addition of SiC and graphite into ZrB2 matrix, the indentation fracture toughness of ZSG sample reached 6.7 MPa m½, meaningfully higher than those of Z and ZS samples with toughness values of 3.2 and 4.3 MPa m½, respectively. Such an improvement in the fracture toughness of ZSG nanocomposite was attributed to the presence of graphite nano-flakes as well as the in-situ formed ZrC and B4C nano-particles. Flexural strength of Z, ZS and ZSG samples reached 445, 624 and 631 MPa, respectively. Although SiC had a remarkable strengthening effect in the ZrB2-based ceramic, the addition of graphite together with SiC had not a significant impact on the flexural strength of composite material.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088759056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088759056</sourcerecordid><originalsourceid>FETCH-proquest_journals_20887590563</originalsourceid><addsrcrecordid>eNqNjU1uwjAQhb2gEvTnDiN1HclNignbolbd01UXoKkZE0NimxlnwTG4ca2oB-hqpPne-95MLXRtmuq1Me1c3YuctNZmbV4W6ra9BuKjl-wtkHNks0B0cGRMnc8EAUOsXI9nEsBwABl_Bm85Btj6DSTkUuwLK4_cEdgOGW0mnoyTSkroDKlHGRDEhwLpAN_8tisuqHfThI1DilIG5VHdOeyFnv7ug3r-eP_afFaJ42UkyftTHDkUtK91266Wa700zf9Svw6xV0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088759056</pqid></control><display><type>article</type><title>Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Parvizi, Soroush ; Ahmadi, Zohre ; Zamharir, Mehran Jaberi ; Asl, Mehdi Shahedi</creator><creatorcontrib>Parvizi, Soroush ; Ahmadi, Zohre ; Zamharir, Mehran Jaberi ; Asl, Mehdi Shahedi</creatorcontrib><description>ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, microstructure and mechanical properties of ZrB2-based ceramic matrix composites. Spark plasma sintering at 1900 °C for 7 min under 40 MPa resulted in fully dense ZS and ZSG samples but a relative density of 96.1% was achieved for Z sample. The growth of ZrB2 grains was effectively decelerated by addition of submicron SiC particles and graphite nano-flakes. Hardness values of 13.1, 19.5 and 16.6 GPa were measured for Z, ZS and ZSG samples, respectively, which verify the hardening effect of SiC and softening effect of graphite in ZrB2-based composites. By the simultaneous addition of SiC and graphite into ZrB2 matrix, the indentation fracture toughness of ZSG sample reached 6.7 MPa m½, meaningfully higher than those of Z and ZS samples with toughness values of 3.2 and 4.3 MPa m½, respectively. Such an improvement in the fracture toughness of ZSG nanocomposite was attributed to the presence of graphite nano-flakes as well as the in-situ formed ZrC and B4C nano-particles. Flexural strength of Z, ZS and ZSG samples reached 445, 624 and 631 MPa, respectively. Although SiC had a remarkable strengthening effect in the ZrB2-based ceramic, the addition of graphite together with SiC had not a significant impact on the flexural strength of composite material.</description><identifier>ISSN: 0263-4368</identifier><language>eng</language><publisher>Shrewsbury: Elsevier BV</publisher><subject>Boron carbide ; Ceramic matrix composites ; Ceramics ; Deceleration ; Flakes ; Flexural strength ; Fracture toughness ; Graphite ; Indentation ; Mechanical properties ; Microstructure ; Nanocomposites ; Plasma sintering ; Refractory materials ; Silicon carbide ; Sinterability ; Spark plasma sintering ; Zirconium carbide ; Zirconium compounds</subject><ispartof>International journal of refractory metals &amp; hard materials, 2018-09, Vol.75, p.10</ispartof><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Parvizi, Soroush</creatorcontrib><creatorcontrib>Ahmadi, Zohre</creatorcontrib><creatorcontrib>Zamharir, Mehran Jaberi</creatorcontrib><creatorcontrib>Asl, Mehdi Shahedi</creatorcontrib><title>Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites</title><title>International journal of refractory metals &amp; hard materials</title><description>ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, microstructure and mechanical properties of ZrB2-based ceramic matrix composites. Spark plasma sintering at 1900 °C for 7 min under 40 MPa resulted in fully dense ZS and ZSG samples but a relative density of 96.1% was achieved for Z sample. The growth of ZrB2 grains was effectively decelerated by addition of submicron SiC particles and graphite nano-flakes. Hardness values of 13.1, 19.5 and 16.6 GPa were measured for Z, ZS and ZSG samples, respectively, which verify the hardening effect of SiC and softening effect of graphite in ZrB2-based composites. By the simultaneous addition of SiC and graphite into ZrB2 matrix, the indentation fracture toughness of ZSG sample reached 6.7 MPa m½, meaningfully higher than those of Z and ZS samples with toughness values of 3.2 and 4.3 MPa m½, respectively. Such an improvement in the fracture toughness of ZSG nanocomposite was attributed to the presence of graphite nano-flakes as well as the in-situ formed ZrC and B4C nano-particles. Flexural strength of Z, ZS and ZSG samples reached 445, 624 and 631 MPa, respectively. Although SiC had a remarkable strengthening effect in the ZrB2-based ceramic, the addition of graphite together with SiC had not a significant impact on the flexural strength of composite material.</description><subject>Boron carbide</subject><subject>Ceramic matrix composites</subject><subject>Ceramics</subject><subject>Deceleration</subject><subject>Flakes</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Graphite</subject><subject>Indentation</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Plasma sintering</subject><subject>Refractory materials</subject><subject>Silicon carbide</subject><subject>Sinterability</subject><subject>Spark plasma sintering</subject><subject>Zirconium carbide</subject><subject>Zirconium compounds</subject><issn>0263-4368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjU1uwjAQhb2gEvTnDiN1HclNignbolbd01UXoKkZE0NimxlnwTG4ca2oB-hqpPne-95MLXRtmuq1Me1c3YuctNZmbV4W6ra9BuKjl-wtkHNks0B0cGRMnc8EAUOsXI9nEsBwABl_Bm85Btj6DSTkUuwLK4_cEdgOGW0mnoyTSkroDKlHGRDEhwLpAN_8tisuqHfThI1DilIG5VHdOeyFnv7ug3r-eP_afFaJ42UkyftTHDkUtK91266Wa700zf9Svw6xV0M</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Parvizi, Soroush</creator><creator>Ahmadi, Zohre</creator><creator>Zamharir, Mehran Jaberi</creator><creator>Asl, Mehdi Shahedi</creator><general>Elsevier BV</general><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180901</creationdate><title>Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites</title><author>Parvizi, Soroush ; Ahmadi, Zohre ; Zamharir, Mehran Jaberi ; Asl, Mehdi Shahedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20887590563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boron carbide</topic><topic>Ceramic matrix composites</topic><topic>Ceramics</topic><topic>Deceleration</topic><topic>Flakes</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Graphite</topic><topic>Indentation</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Plasma sintering</topic><topic>Refractory materials</topic><topic>Silicon carbide</topic><topic>Sinterability</topic><topic>Spark plasma sintering</topic><topic>Zirconium carbide</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvizi, Soroush</creatorcontrib><creatorcontrib>Ahmadi, Zohre</creatorcontrib><creatorcontrib>Zamharir, Mehran Jaberi</creatorcontrib><creatorcontrib>Asl, Mehdi Shahedi</creatorcontrib><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvizi, Soroush</au><au>Ahmadi, Zohre</au><au>Zamharir, Mehran Jaberi</au><au>Asl, Mehdi Shahedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>75</volume><spage>10</spage><pages>10-</pages><issn>0263-4368</issn><abstract>ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, microstructure and mechanical properties of ZrB2-based ceramic matrix composites. Spark plasma sintering at 1900 °C for 7 min under 40 MPa resulted in fully dense ZS and ZSG samples but a relative density of 96.1% was achieved for Z sample. The growth of ZrB2 grains was effectively decelerated by addition of submicron SiC particles and graphite nano-flakes. Hardness values of 13.1, 19.5 and 16.6 GPa were measured for Z, ZS and ZSG samples, respectively, which verify the hardening effect of SiC and softening effect of graphite in ZrB2-based composites. By the simultaneous addition of SiC and graphite into ZrB2 matrix, the indentation fracture toughness of ZSG sample reached 6.7 MPa m½, meaningfully higher than those of Z and ZS samples with toughness values of 3.2 and 4.3 MPa m½, respectively. Such an improvement in the fracture toughness of ZSG nanocomposite was attributed to the presence of graphite nano-flakes as well as the in-situ formed ZrC and B4C nano-particles. Flexural strength of Z, ZS and ZSG samples reached 445, 624 and 631 MPa, respectively. Although SiC had a remarkable strengthening effect in the ZrB2-based ceramic, the addition of graphite together with SiC had not a significant impact on the flexural strength of composite material.</abstract><cop>Shrewsbury</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2018-09, Vol.75, p.10
issn 0263-4368
language eng
recordid cdi_proquest_journals_2088759056
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Boron carbide
Ceramic matrix composites
Ceramics
Deceleration
Flakes
Flexural strength
Fracture toughness
Graphite
Indentation
Mechanical properties
Microstructure
Nanocomposites
Plasma sintering
Refractory materials
Silicon carbide
Sinterability
Spark plasma sintering
Zirconium carbide
Zirconium compounds
title Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB^sub 2^ nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effects%20of%20graphite%20nano-flakes%20and%20submicron%20SiC%20particles%20on%20the%20characteristics%20of%20spark%20plasma%20sintered%20ZrB%5Esub%202%5E%20nanocomposites&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Parvizi,%20Soroush&rft.date=2018-09-01&rft.volume=75&rft.spage=10&rft.pages=10-&rft.issn=0263-4368&rft_id=info:doi/&rft_dat=%3Cproquest%3E2088759056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20887590563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088759056&rft_id=info:pmid/&rfr_iscdi=true