Loading…
Magnetic Anisotropy Variations and Non-Equilibrium Tunneling in a Cobalt Nanoparticle
We present detailed measurements of the discrete electron-tunneling level spectrum within nanometer-scale cobalt particles as a function of magnetic field and gate voltage, in this way probing individual quantum many-body eigenstates inside ferromagnetic samples. Variations among the observed levels...
Saved in:
Published in: | arXiv.org 2001-08 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present detailed measurements of the discrete electron-tunneling level spectrum within nanometer-scale cobalt particles as a function of magnetic field and gate voltage, in this way probing individual quantum many-body eigenstates inside ferromagnetic samples. Variations among the observed levels indicate that different quantum states within one particle are subject to different magnetic anisotropy energies. Gate-voltage studies demonstrate that the low-energy tunneling spectrum is affected dramatically by the presence of non-equilibrium spin excitations. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0108166 |