Loading…

Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants

•Thermal behaviors of single and multi PCM thermocline storage are presented.•Temperature response and phase change process within capsules are revealed.•Energy analysis of thermocline latent heat thermal storage systems is presented.•Multi-stage PCM is a promising solution to store thermal energy f...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2018-07, Vol.139, p.609-622
Main Authors: Elfeky, K.E., Ahmed, N., Wang, Qiuwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13
cites cdi_FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13
container_end_page 622
container_issue
container_start_page 609
container_title Applied thermal engineering
container_volume 139
creator Elfeky, K.E.
Ahmed, N.
Wang, Qiuwang
description •Thermal behaviors of single and multi PCM thermocline storage are presented.•Temperature response and phase change process within capsules are revealed.•Energy analysis of thermocline latent heat thermal storage systems is presented.•Multi-stage PCM is a promising solution to store thermal energy for CSP plants. This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system in concentrating solar power (CSP). One way of improving the performance of a latent thermal energy storage system is by implementing the multiple phase change materials (PCMs) design. The behavior of a packed bed latent heat thermal energy storage system at different cases is numerically analyzed. The molten salt is considered for the heat transfer fluid (HTF) with phase change material (PCM) capsules as the filler. In this design, spherical capsules filled with PCMs of different thermo-physical properties are used. The capsules are packed in the bed at different sections based on the PCM melting temperature. The model developed using the Concentric-Dispersion (C-D) equations. The governing equations are solved in MATLAB, and the results obtained are validated against experimental data from the literature. The performance of the systems is calculated. The results show that the three-stage PCMs system with different melting point exhibited the highest energy and exergy efficiency during a charging discharging cycle. Moreover, results show that the three-stage PCMs unit can improve the heat transfer rate greatly and shorten the heat storage time effectively.
doi_str_mv 10.1016/j.applthermaleng.2018.04.122
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089193010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118309013</els_id><sourcerecordid>2089193010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13</originalsourceid><addsrcrecordid>eNqNUE1r3DAQNaWFbNP8B0F7tSvJ8hf0EpamDSRtIMlZjOWxV4stOSM5Sy757fWyufSWy8wwvPdm3kuSb4Jngovy-z6DeR7jDmmCEd2QSS7qjKtMSPkh2Yi6ytOi5OXHdc6LJlW5EGfJ5xD2nAtZV2qTvP5ZJiRrYGTGTzOQDd6xFuMB0bFg3TAiu9veMnAdm5Yx2jREGE67FgJ2bGeHHYs4zUgQF0L29hBDhzS8sBA9HRm9J7a9v2PRH5DYPIKL4UvyqYcx4MVbP08er34-bH-nN39_XW8vb1KTN1VMqxKqAtsW8iavwJRtWxai5kUlJYBqq06aQnV1rwqhpDJd3vMWOmyKfvWNazlPvp50Z_JPC4ao934ht57UkteNaHIu-Ir6cUIZ8iEQ9nomOwG9aMH1MXG91_8nro-Ja670mvhKvzrRcXXybJF0MBadwc4Smqg7b98n9A8wXJSy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089193010</pqid></control><display><type>article</type><title>Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants</title><source>ScienceDirect Freedom Collection</source><creator>Elfeky, K.E. ; Ahmed, N. ; Wang, Qiuwang</creator><creatorcontrib>Elfeky, K.E. ; Ahmed, N. ; Wang, Qiuwang</creatorcontrib><description>•Thermal behaviors of single and multi PCM thermocline storage are presented.•Temperature response and phase change process within capsules are revealed.•Energy analysis of thermocline latent heat thermal storage systems is presented.•Multi-stage PCM is a promising solution to store thermal energy for CSP plants. This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system in concentrating solar power (CSP). One way of improving the performance of a latent thermal energy storage system is by implementing the multiple phase change materials (PCMs) design. The behavior of a packed bed latent heat thermal energy storage system at different cases is numerically analyzed. The molten salt is considered for the heat transfer fluid (HTF) with phase change material (PCM) capsules as the filler. In this design, spherical capsules filled with PCMs of different thermo-physical properties are used. The capsules are packed in the bed at different sections based on the PCM melting temperature. The model developed using the Concentric-Dispersion (C-D) equations. The governing equations are solved in MATLAB, and the results obtained are validated against experimental data from the literature. The performance of the systems is calculated. The results show that the three-stage PCMs system with different melting point exhibited the highest energy and exergy efficiency during a charging discharging cycle. Moreover, results show that the three-stage PCMs unit can improve the heat transfer rate greatly and shorten the heat storage time effectively.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.04.122</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Concentrating solar power ; Energy storage ; Exergy ; Heat storage ; Heat transfer ; Latent heat ; Mathematical models ; Melt temperature ; Melting points ; Melting temperature ; Molten salts ; Packed beds ; Phase change material ; Phase change materials ; Physical properties ; Solar energy ; Spherical capsule ; Temperature ; Thermal energy</subject><ispartof>Applied thermal engineering, 2018-07, Vol.139, p.609-622</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13</citedby><cites>FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Elfeky, K.E.</creatorcontrib><creatorcontrib>Ahmed, N.</creatorcontrib><creatorcontrib>Wang, Qiuwang</creatorcontrib><title>Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants</title><title>Applied thermal engineering</title><description>•Thermal behaviors of single and multi PCM thermocline storage are presented.•Temperature response and phase change process within capsules are revealed.•Energy analysis of thermocline latent heat thermal storage systems is presented.•Multi-stage PCM is a promising solution to store thermal energy for CSP plants. This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system in concentrating solar power (CSP). One way of improving the performance of a latent thermal energy storage system is by implementing the multiple phase change materials (PCMs) design. The behavior of a packed bed latent heat thermal energy storage system at different cases is numerically analyzed. The molten salt is considered for the heat transfer fluid (HTF) with phase change material (PCM) capsules as the filler. In this design, spherical capsules filled with PCMs of different thermo-physical properties are used. The capsules are packed in the bed at different sections based on the PCM melting temperature. The model developed using the Concentric-Dispersion (C-D) equations. The governing equations are solved in MATLAB, and the results obtained are validated against experimental data from the literature. The performance of the systems is calculated. The results show that the three-stage PCMs system with different melting point exhibited the highest energy and exergy efficiency during a charging discharging cycle. Moreover, results show that the three-stage PCMs unit can improve the heat transfer rate greatly and shorten the heat storage time effectively.</description><subject>Concentrating solar power</subject><subject>Energy storage</subject><subject>Exergy</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>Melting points</subject><subject>Melting temperature</subject><subject>Molten salts</subject><subject>Packed beds</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Physical properties</subject><subject>Solar energy</subject><subject>Spherical capsule</subject><subject>Temperature</subject><subject>Thermal energy</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUE1r3DAQNaWFbNP8B0F7tSvJ8hf0EpamDSRtIMlZjOWxV4stOSM5Sy757fWyufSWy8wwvPdm3kuSb4Jngovy-z6DeR7jDmmCEd2QSS7qjKtMSPkh2Yi6ytOi5OXHdc6LJlW5EGfJ5xD2nAtZV2qTvP5ZJiRrYGTGTzOQDd6xFuMB0bFg3TAiu9veMnAdm5Yx2jREGE67FgJ2bGeHHYs4zUgQF0L29hBDhzS8sBA9HRm9J7a9v2PRH5DYPIKL4UvyqYcx4MVbP08er34-bH-nN39_XW8vb1KTN1VMqxKqAtsW8iavwJRtWxai5kUlJYBqq06aQnV1rwqhpDJd3vMWOmyKfvWNazlPvp50Z_JPC4ao934ht57UkteNaHIu-Ir6cUIZ8iEQ9nomOwG9aMH1MXG91_8nro-Ja670mvhKvzrRcXXybJF0MBadwc4Smqg7b98n9A8wXJSy</recordid><startdate>20180705</startdate><enddate>20180705</enddate><creator>Elfeky, K.E.</creator><creator>Ahmed, N.</creator><creator>Wang, Qiuwang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180705</creationdate><title>Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants</title><author>Elfeky, K.E. ; Ahmed, N. ; Wang, Qiuwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Concentrating solar power</topic><topic>Energy storage</topic><topic>Exergy</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>Melting points</topic><topic>Melting temperature</topic><topic>Molten salts</topic><topic>Packed beds</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Physical properties</topic><topic>Solar energy</topic><topic>Spherical capsule</topic><topic>Temperature</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elfeky, K.E.</creatorcontrib><creatorcontrib>Ahmed, N.</creatorcontrib><creatorcontrib>Wang, Qiuwang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elfeky, K.E.</au><au>Ahmed, N.</au><au>Wang, Qiuwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants</atitle><jtitle>Applied thermal engineering</jtitle><date>2018-07-05</date><risdate>2018</risdate><volume>139</volume><spage>609</spage><epage>622</epage><pages>609-622</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Thermal behaviors of single and multi PCM thermocline storage are presented.•Temperature response and phase change process within capsules are revealed.•Energy analysis of thermocline latent heat thermal storage systems is presented.•Multi-stage PCM is a promising solution to store thermal energy for CSP plants. This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system in concentrating solar power (CSP). One way of improving the performance of a latent thermal energy storage system is by implementing the multiple phase change materials (PCMs) design. The behavior of a packed bed latent heat thermal energy storage system at different cases is numerically analyzed. The molten salt is considered for the heat transfer fluid (HTF) with phase change material (PCM) capsules as the filler. In this design, spherical capsules filled with PCMs of different thermo-physical properties are used. The capsules are packed in the bed at different sections based on the PCM melting temperature. The model developed using the Concentric-Dispersion (C-D) equations. The governing equations are solved in MATLAB, and the results obtained are validated against experimental data from the literature. The performance of the systems is calculated. The results show that the three-stage PCMs system with different melting point exhibited the highest energy and exergy efficiency during a charging discharging cycle. Moreover, results show that the three-stage PCMs unit can improve the heat transfer rate greatly and shorten the heat storage time effectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.04.122</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2018-07, Vol.139, p.609-622
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2089193010
source ScienceDirect Freedom Collection
subjects Concentrating solar power
Energy storage
Exergy
Heat storage
Heat transfer
Latent heat
Mathematical models
Melt temperature
Melting points
Melting temperature
Molten salts
Packed beds
Phase change material
Phase change materials
Physical properties
Solar energy
Spherical capsule
Temperature
Thermal energy
title Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20comparison%20between%20single%20PCM%20and%20multi-stage%20PCM%20based%20high%20temperature%20thermal%20energy%20storage%20for%20CSP%20tower%20plants&rft.jtitle=Applied%20thermal%20engineering&rft.au=Elfeky,%20K.E.&rft.date=2018-07-05&rft.volume=139&rft.spage=609&rft.epage=622&rft.pages=609-622&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.04.122&rft_dat=%3Cproquest_cross%3E2089193010%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-76a75ebba3937ac6bb651805722aa4b7d2c54d8f451424cd3f0bade95f135ef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089193010&rft_id=info:pmid/&rfr_iscdi=true