Loading…
Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method
The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum tr...
Saved in:
Published in: | arXiv.org 2001-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Antonov, A N Gaidarov, M Ivanov, M V Kadrev, D N Krumova, G Z Hodgson, P E von Geramb, H V |
description | The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c)\(^{2}\). The good agreement with the data is in contrast with the results of the existing non-relativistic approaches. In this work we firstly make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution \(n(q)\) of the deuteron using six invariant functions \(f_{i}\) \((i=1,...,6)\) instead of two (\(S\)- and \(D\)-waves) in the nonrelativistic case. The comparison with the \(y\)-scaling data shows the decisive role of the function \(f_{5}\) which at \(q\geq\) 500 MeV/c exceeds all other \(f\)-functions (as well as the \(S\)- and \(D\)-waves) for the correct description of \(n(q)\) of the deuteron in the high-momentum region. Comparison with other calculations using \(S\)- and \(D\)-waves corresponding to various nucleon-nucleon potentials is made. Secondly, using clear indications that the high-momentum components of \(n(q)\) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate \(n(q)\) in \((A,Z)\)-nuclei on the basis of the deuteron momentum distribution. As examples, \(n(q)\) in \(^{4}\)He, \(^{12}\)C and \(^{56}\)Fe are calculated and good agreement with the \(y\)-scaling data is obtained. |
doi_str_mv | 10.48550/arxiv.0106044 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089310234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089310234</sourcerecordid><originalsourceid>FETCH-proquest_journals_20893102343</originalsourceid><addsrcrecordid>eNqNi7FuAjEQRC2kSEGENvVK1Ef2bB856ghElSo9Mthwi852sNch-XscKR-QakZv3gjx3OJS912HLyZ909cSW1yh1hMxlUq1Ta-lfBTznC-IKFevsuvUVJj3chxdDOCjd4GLB0uZEx0KU6UUwLrCLtVugoXIg0sQfj8EN-KhChXBSOeBm1PVGOxPMJ6OGbzjIdon8XAyY3bzv5yJxXbz8bZrPlO8Fpd5f4klhTrtJfZr1aJUWv3PugPdE0vK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089310234</pqid></control><display><type>article</type><title>Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method</title><source>Publicly Available Content Database</source><creator>Antonov, A N ; Gaidarov, M ; Ivanov, M V ; Kadrev, D N ; Krumova, G Z ; Hodgson, P E ; von Geramb, H V</creator><creatorcontrib>Antonov, A N ; Gaidarov, M ; Ivanov, M V ; Kadrev, D N ; Krumova, G Z ; Hodgson, P E ; von Geramb, H V</creatorcontrib><description>The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c)\(^{2}\). The good agreement with the data is in contrast with the results of the existing non-relativistic approaches. In this work we firstly make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution \(n(q)\) of the deuteron using six invariant functions \(f_{i}\) \((i=1,...,6)\) instead of two (\(S\)- and \(D\)-waves) in the nonrelativistic case. The comparison with the \(y\)-scaling data shows the decisive role of the function \(f_{5}\) which at \(q\geq\) 500 MeV/c exceeds all other \(f\)-functions (as well as the \(S\)- and \(D\)-waves) for the correct description of \(n(q)\) of the deuteron in the high-momentum region. Comparison with other calculations using \(S\)- and \(D\)-waves corresponding to various nucleon-nucleon potentials is made. Secondly, using clear indications that the high-momentum components of \(n(q)\) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate \(n(q)\) in \((A,Z)\)-nuclei on the basis of the deuteron momentum distribution. As examples, \(n(q)\) in \(^{4}\)He, \(^{12}\)C and \(^{56}\)Fe are calculated and good agreement with the \(y\)-scaling data is obtained.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0106044</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Elastic scattering ; Form factors ; Mathematical analysis ; Momentum transfer ; Nuclei ; Quadrupoles ; Relativism ; Relativistic effects ; Scaling</subject><ispartof>arXiv.org, 2001-11</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2089310234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Antonov, A N</creatorcontrib><creatorcontrib>Gaidarov, M</creatorcontrib><creatorcontrib>Ivanov, M V</creatorcontrib><creatorcontrib>Kadrev, D N</creatorcontrib><creatorcontrib>Krumova, G Z</creatorcontrib><creatorcontrib>Hodgson, P E</creatorcontrib><creatorcontrib>von Geramb, H V</creatorcontrib><title>Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method</title><title>arXiv.org</title><description>The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c)\(^{2}\). The good agreement with the data is in contrast with the results of the existing non-relativistic approaches. In this work we firstly make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution \(n(q)\) of the deuteron using six invariant functions \(f_{i}\) \((i=1,...,6)\) instead of two (\(S\)- and \(D\)-waves) in the nonrelativistic case. The comparison with the \(y\)-scaling data shows the decisive role of the function \(f_{5}\) which at \(q\geq\) 500 MeV/c exceeds all other \(f\)-functions (as well as the \(S\)- and \(D\)-waves) for the correct description of \(n(q)\) of the deuteron in the high-momentum region. Comparison with other calculations using \(S\)- and \(D\)-waves corresponding to various nucleon-nucleon potentials is made. Secondly, using clear indications that the high-momentum components of \(n(q)\) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate \(n(q)\) in \((A,Z)\)-nuclei on the basis of the deuteron momentum distribution. As examples, \(n(q)\) in \(^{4}\)He, \(^{12}\)C and \(^{56}\)Fe are calculated and good agreement with the \(y\)-scaling data is obtained.</description><subject>Accuracy</subject><subject>Elastic scattering</subject><subject>Form factors</subject><subject>Mathematical analysis</subject><subject>Momentum transfer</subject><subject>Nuclei</subject><subject>Quadrupoles</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Scaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7FuAjEQRC2kSEGENvVK1Ef2bB856ghElSo9Mthwi852sNch-XscKR-QakZv3gjx3OJS912HLyZ909cSW1yh1hMxlUq1Ta-lfBTznC-IKFevsuvUVJj3chxdDOCjd4GLB0uZEx0KU6UUwLrCLtVugoXIg0sQfj8EN-KhChXBSOeBm1PVGOxPMJ6OGbzjIdon8XAyY3bzv5yJxXbz8bZrPlO8Fpd5f4klhTrtJfZr1aJUWv3PugPdE0vK</recordid><startdate>20011109</startdate><enddate>20011109</enddate><creator>Antonov, A N</creator><creator>Gaidarov, M</creator><creator>Ivanov, M V</creator><creator>Kadrev, D N</creator><creator>Krumova, G Z</creator><creator>Hodgson, P E</creator><creator>von Geramb, H V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20011109</creationdate><title>Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method</title><author>Antonov, A N ; Gaidarov, M ; Ivanov, M V ; Kadrev, D N ; Krumova, G Z ; Hodgson, P E ; von Geramb, H V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20893102343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Elastic scattering</topic><topic>Form factors</topic><topic>Mathematical analysis</topic><topic>Momentum transfer</topic><topic>Nuclei</topic><topic>Quadrupoles</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Scaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonov, A N</creatorcontrib><creatorcontrib>Gaidarov, M</creatorcontrib><creatorcontrib>Ivanov, M V</creatorcontrib><creatorcontrib>Kadrev, D N</creatorcontrib><creatorcontrib>Krumova, G Z</creatorcontrib><creatorcontrib>Hodgson, P E</creatorcontrib><creatorcontrib>von Geramb, H V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, A N</au><au>Gaidarov, M</au><au>Ivanov, M V</au><au>Kadrev, D N</au><au>Krumova, G Z</au><au>Hodgson, P E</au><au>von Geramb, H V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method</atitle><jtitle>arXiv.org</jtitle><date>2001-11-09</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c)\(^{2}\). The good agreement with the data is in contrast with the results of the existing non-relativistic approaches. In this work we firstly make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution \(n(q)\) of the deuteron using six invariant functions \(f_{i}\) \((i=1,...,6)\) instead of two (\(S\)- and \(D\)-waves) in the nonrelativistic case. The comparison with the \(y\)-scaling data shows the decisive role of the function \(f_{5}\) which at \(q\geq\) 500 MeV/c exceeds all other \(f\)-functions (as well as the \(S\)- and \(D\)-waves) for the correct description of \(n(q)\) of the deuteron in the high-momentum region. Comparison with other calculations using \(S\)- and \(D\)-waves corresponding to various nucleon-nucleon potentials is made. Secondly, using clear indications that the high-momentum components of \(n(q)\) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate \(n(q)\) in \((A,Z)\)-nuclei on the basis of the deuteron momentum distribution. As examples, \(n(q)\) in \(^{4}\)He, \(^{12}\)C and \(^{56}\)Fe are calculated and good agreement with the \(y\)-scaling data is obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0106044</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2001-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2089310234 |
source | Publicly Available Content Database |
subjects | Accuracy Elastic scattering Form factors Mathematical analysis Momentum transfer Nuclei Quadrupoles Relativism Relativistic effects Scaling |
title | Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nucleon%20momentum%20distribution%20in%20deuteron%20and%20other%20nuclei%20within%20the%20light-front%20dynamics%20method&rft.jtitle=arXiv.org&rft.au=Antonov,%20A%20N&rft.date=2001-11-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0106044&rft_dat=%3Cproquest%3E2089310234%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20893102343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089310234&rft_id=info:pmid/&rfr_iscdi=true |