Loading…
Quantum adiabatic optimization and combinatorial landscapes
In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, \(\gamma=M/N\). We introduce a set of macroscopic parameters (landscapes) and put forward a...
Saved in:
Published in: | arXiv.org 2004-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Smelyanskiy, V N Knysh, S Morris, R D |
description | In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, \(\gamma=M/N\). We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold \(\gamma=\gamma_d\) starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes. |
doi_str_mv | 10.48550/arxiv.0402199 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089342777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089342777</sourcerecordid><originalsourceid>FETCH-proquest_journals_20893427773</originalsourceid><addsrcrecordid>eNqNir0KwjAYRYMgWLSrc8C5Nf2S2BZHUVwF9_L1R0hpk5ofEZ_eDj6A0z2ccwnZZiwVhZRsj_atXikTDLKyXJAIOM-SQgCsSOxczxiDQw5S8ogcbwG1DyPFVmGNXjXUTF6N6jOz0RR1Sxsz1kqjN1bhQIdZuQanzm3I8oGD6-Lfrsnucr6frslkzTN0zle9CVbPqQJWlFxAnuf8v9cXolo9tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089342777</pqid></control><display><type>article</type><title>Quantum adiabatic optimization and combinatorial landscapes</title><source>Publicly Available Content Database</source><creator>Smelyanskiy, V N ; Knysh, S ; Morris, R D</creator><creatorcontrib>Smelyanskiy, V N ; Knysh, S ; Morris, R D</creatorcontrib><description>In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, \(\gamma=M/N\). We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold \(\gamma=\gamma_d\) starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0402199</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic flow ; Combinatorial analysis ; Eigenvalues ; Evolutionary algorithms ; Graphs ; Landscape ; Optimization ; Statistical mechanics ; Upper bounds ; Variations</subject><ispartof>arXiv.org, 2004-03</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/quant-ph/0402199.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2089342777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,27907,36994,44572</link.rule.ids></links><search><creatorcontrib>Smelyanskiy, V N</creatorcontrib><creatorcontrib>Knysh, S</creatorcontrib><creatorcontrib>Morris, R D</creatorcontrib><title>Quantum adiabatic optimization and combinatorial landscapes</title><title>arXiv.org</title><description>In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, \(\gamma=M/N\). We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold \(\gamma=\gamma_d\) starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.</description><subject>Adiabatic flow</subject><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Evolutionary algorithms</subject><subject>Graphs</subject><subject>Landscape</subject><subject>Optimization</subject><subject>Statistical mechanics</subject><subject>Upper bounds</subject><subject>Variations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNir0KwjAYRYMgWLSrc8C5Nf2S2BZHUVwF9_L1R0hpk5ofEZ_eDj6A0z2ccwnZZiwVhZRsj_atXikTDLKyXJAIOM-SQgCsSOxczxiDQw5S8ogcbwG1DyPFVmGNXjXUTF6N6jOz0RR1Sxsz1kqjN1bhQIdZuQanzm3I8oGD6-Lfrsnucr6frslkzTN0zle9CVbPqQJWlFxAnuf8v9cXolo9tg</recordid><startdate>20040302</startdate><enddate>20040302</enddate><creator>Smelyanskiy, V N</creator><creator>Knysh, S</creator><creator>Morris, R D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20040302</creationdate><title>Quantum adiabatic optimization and combinatorial landscapes</title><author>Smelyanskiy, V N ; Knysh, S ; Morris, R D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20893427773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adiabatic flow</topic><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Evolutionary algorithms</topic><topic>Graphs</topic><topic>Landscape</topic><topic>Optimization</topic><topic>Statistical mechanics</topic><topic>Upper bounds</topic><topic>Variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Smelyanskiy, V N</creatorcontrib><creatorcontrib>Knysh, S</creatorcontrib><creatorcontrib>Morris, R D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smelyanskiy, V N</au><au>Knysh, S</au><au>Morris, R D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum adiabatic optimization and combinatorial landscapes</atitle><jtitle>arXiv.org</jtitle><date>2004-03-02</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, \(\gamma=M/N\). We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold \(\gamma=\gamma_d\) starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0402199</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2004-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2089342777 |
source | Publicly Available Content Database |
subjects | Adiabatic flow Combinatorial analysis Eigenvalues Evolutionary algorithms Graphs Landscape Optimization Statistical mechanics Upper bounds Variations |
title | Quantum adiabatic optimization and combinatorial landscapes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20adiabatic%20optimization%20and%20combinatorial%20landscapes&rft.jtitle=arXiv.org&rft.au=Smelyanskiy,%20V%20N&rft.date=2004-03-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0402199&rft_dat=%3Cproquest%3E2089342777%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20893427773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089342777&rft_id=info:pmid/&rfr_iscdi=true |