Loading…

Discrete kink dynamics in hydrogen-bonded chains I: The one-component model

We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potentia...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2002-08
Main Authors: Karpan, V M, Zolotaryuk, Y, Christiansen, P L, Zolotaryuk, A V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Karpan, V M
Zolotaryuk, Y
Christiansen, P L
Zolotaryuk, A V
description We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).
doi_str_mv 10.48550/arxiv.0208049
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089392712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089392712</sourcerecordid><originalsourceid>FETCH-proquest_journals_20893927123</originalsourceid><addsrcrecordid>eNqNjj0PgjAUABsTE4m6Or_EGSwtKLj6EY2ru0H6lCq8YgtG_r0M_gCnG-6GY2wW8iBK4pgvMvvR74ALnvAoHTBPSBn6SSTEiE2de3DOxXIl4lh67LTVLrfYIDw1PUF1lFU6d6AJik5Zc0fyr4YUKsiLTJOD4xrOBYIh9HNT1T2pgcooLCdseMtKh9Mfx2y-3503B7-25tWiay4P01rq1aVfS2UqVqGQ_1Vfc3ZCVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089392712</pqid></control><display><type>article</type><title>Discrete kink dynamics in hydrogen-bonded chains I: The one-component model</title><source>Publicly Available Content Database</source><creator>Karpan, V M ; Zolotaryuk, Y ; Christiansen, P L ; Zolotaryuk, A V</creator><creatorcontrib>Karpan, V M ; Zolotaryuk, Y ; Christiansen, P L ; Zolotaryuk, A V</creatorcontrib><description>We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0208049</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anharmonicity ; Bifurcations ; Chains ; Dependence ; Hydrogen bonding ; Hydrogen bonds ; Morse potential ; Solitary waves ; Structural stability</subject><ispartof>arXiv.org, 2002-08</ispartof><rights>2002. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2089392712?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Karpan, V M</creatorcontrib><creatorcontrib>Zolotaryuk, Y</creatorcontrib><creatorcontrib>Christiansen, P L</creatorcontrib><creatorcontrib>Zolotaryuk, A V</creatorcontrib><title>Discrete kink dynamics in hydrogen-bonded chains I: The one-component model</title><title>arXiv.org</title><description>We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).</description><subject>Anharmonicity</subject><subject>Bifurcations</subject><subject>Chains</subject><subject>Dependence</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Morse potential</subject><subject>Solitary waves</subject><subject>Structural stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjj0PgjAUABsTE4m6Or_EGSwtKLj6EY2ru0H6lCq8YgtG_r0M_gCnG-6GY2wW8iBK4pgvMvvR74ALnvAoHTBPSBn6SSTEiE2de3DOxXIl4lh67LTVLrfYIDw1PUF1lFU6d6AJik5Zc0fyr4YUKsiLTJOD4xrOBYIh9HNT1T2pgcooLCdseMtKh9Mfx2y-3503B7-25tWiay4P01rq1aVfS2UqVqGQ_1Vfc3ZCVA</recordid><startdate>20020830</startdate><enddate>20020830</enddate><creator>Karpan, V M</creator><creator>Zolotaryuk, Y</creator><creator>Christiansen, P L</creator><creator>Zolotaryuk, A V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20020830</creationdate><title>Discrete kink dynamics in hydrogen-bonded chains I: The one-component model</title><author>Karpan, V M ; Zolotaryuk, Y ; Christiansen, P L ; Zolotaryuk, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20893927123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anharmonicity</topic><topic>Bifurcations</topic><topic>Chains</topic><topic>Dependence</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Morse potential</topic><topic>Solitary waves</topic><topic>Structural stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Karpan, V M</creatorcontrib><creatorcontrib>Zolotaryuk, Y</creatorcontrib><creatorcontrib>Christiansen, P L</creatorcontrib><creatorcontrib>Zolotaryuk, A V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpan, V M</au><au>Zolotaryuk, Y</au><au>Christiansen, P L</au><au>Zolotaryuk, A V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discrete kink dynamics in hydrogen-bonded chains I: The one-component model</atitle><jtitle>arXiv.org</jtitle><date>2002-08-30</date><risdate>2002</risdate><eissn>2331-8422</eissn><abstract>We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0208049</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2002-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2089392712
source Publicly Available Content Database
subjects Anharmonicity
Bifurcations
Chains
Dependence
Hydrogen bonding
Hydrogen bonds
Morse potential
Solitary waves
Structural stability
title Discrete kink dynamics in hydrogen-bonded chains I: The one-component model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discrete%20kink%20dynamics%20in%20hydrogen-bonded%20chains%20I:%20The%20one-component%20model&rft.jtitle=arXiv.org&rft.au=Karpan,%20V%20M&rft.date=2002-08-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0208049&rft_dat=%3Cproquest%3E2089392712%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20893927123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089392712&rft_id=info:pmid/&rfr_iscdi=true