Loading…

Manifold matching using shortest-path distance and joint neighborhood selection

•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2017-06, Vol.92, p.41-48
Main Authors: Shen, Cencheng, Vogelstein, Joshua T., Priebe, Carey E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33
cites cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33
container_end_page 48
container_issue
container_start_page 41
container_title Pattern recognition letters
container_volume 92
creator Shen, Cencheng
Vogelstein, Joshua T.
Priebe, Carey E.
description •We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.
doi_str_mv 10.1016/j.patrec.2017.04.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089730148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016786551730106X</els_id><sourcerecordid>2089730148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwicU5Yx07sXpBQxZ9U1AucLcd2GkepXWwXibfHVThz2b18M7szCN1iqDDg9n6sDjIFo6oaMKuAVgDNGVpgzuqSEUrP0SJjrORt01yiqxhHAGjJii_Q9l062_tJF3uZ1GDdrjjG04yDD8nEVGbrodA2JumUKaTTxeitS4Uzdjd0Pgze6yKayahkvbtGF72corn520v0-fz0sX4tN9uXt_XjplSEQyopZUxLimvCG9MwaJkh-Z-V7CTpOVc9Zh2XtNE9brnWpMZ1S0nHOoaJwpldorvZ9xD81zH_KUZ_DC6fFDXwFSOAKc8UnSkVfIzB9OIQ7F6GH4FBnKoTo5irE6fqBFCRq8uyh1lmcoJva4KIypocX9uMJqG9_d_gF93zeVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089730148</pqid></control><display><type>article</type><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><source>ScienceDirect Freedom Collection</source><creator>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</creator><creatorcontrib>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</creatorcontrib><description>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2017.04.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Data analysis ; Data processing ; Datasets ; Embedding ; Euclidean geometry ; Geodesic distance ; Graphs ; Information processing ; k-nearest-neighbor ; Manifolds (mathematics) ; Matching ; Nearest-neighbor ; Nonlinear systems ; Nonlinear transformation ; Pattern recognition ; Seeded graph matching ; Shortest-path problems</subject><ispartof>Pattern recognition letters, 2017-06, Vol.92, p.41-48</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</citedby><cites>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shen, Cencheng</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Priebe, Carey E.</creatorcontrib><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><title>Pattern recognition letters</title><description>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</description><subject>Algorithms</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Euclidean geometry</subject><subject>Geodesic distance</subject><subject>Graphs</subject><subject>Information processing</subject><subject>k-nearest-neighbor</subject><subject>Manifolds (mathematics)</subject><subject>Matching</subject><subject>Nearest-neighbor</subject><subject>Nonlinear systems</subject><subject>Nonlinear transformation</subject><subject>Pattern recognition</subject><subject>Seeded graph matching</subject><subject>Shortest-path problems</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwicU5Yx07sXpBQxZ9U1AucLcd2GkepXWwXibfHVThz2b18M7szCN1iqDDg9n6sDjIFo6oaMKuAVgDNGVpgzuqSEUrP0SJjrORt01yiqxhHAGjJii_Q9l062_tJF3uZ1GDdrjjG04yDD8nEVGbrodA2JumUKaTTxeitS4Uzdjd0Pgze6yKayahkvbtGF72corn520v0-fz0sX4tN9uXt_XjplSEQyopZUxLimvCG9MwaJkh-Z-V7CTpOVc9Zh2XtNE9brnWpMZ1S0nHOoaJwpldorvZ9xD81zH_KUZ_DC6fFDXwFSOAKc8UnSkVfIzB9OIQ7F6GH4FBnKoTo5irE6fqBFCRq8uyh1lmcoJva4KIypocX9uMJqG9_d_gF93zeVI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Shen, Cencheng</creator><creator>Vogelstein, Joshua T.</creator><creator>Priebe, Carey E.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><author>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Euclidean geometry</topic><topic>Geodesic distance</topic><topic>Graphs</topic><topic>Information processing</topic><topic>k-nearest-neighbor</topic><topic>Manifolds (mathematics)</topic><topic>Matching</topic><topic>Nearest-neighbor</topic><topic>Nonlinear systems</topic><topic>Nonlinear transformation</topic><topic>Pattern recognition</topic><topic>Seeded graph matching</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Cencheng</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Priebe, Carey E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Cencheng</au><au>Vogelstein, Joshua T.</au><au>Priebe, Carey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifold matching using shortest-path distance and joint neighborhood selection</atitle><jtitle>Pattern recognition letters</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>92</volume><spage>41</spage><epage>48</epage><pages>41-48</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2017.04.005</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2017-06, Vol.92, p.41-48
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2089730148
source ScienceDirect Freedom Collection
subjects Algorithms
Data analysis
Data processing
Datasets
Embedding
Euclidean geometry
Geodesic distance
Graphs
Information processing
k-nearest-neighbor
Manifolds (mathematics)
Matching
Nearest-neighbor
Nonlinear systems
Nonlinear transformation
Pattern recognition
Seeded graph matching
Shortest-path problems
title Manifold matching using shortest-path distance and joint neighborhood selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifold%20matching%20using%20shortest-path%20distance%20and%20joint%20neighborhood%20selection&rft.jtitle=Pattern%20recognition%20letters&rft.au=Shen,%20Cencheng&rft.date=2017-06-01&rft.volume=92&rft.spage=41&rft.epage=48&rft.pages=41-48&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2017.04.005&rft_dat=%3Cproquest_cross%3E2089730148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089730148&rft_id=info:pmid/&rfr_iscdi=true