Loading…
Manifold matching using shortest-path distance and joint neighborhood selection
•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching. Matching datasets of multiple modalities has...
Saved in:
Published in: | Pattern recognition letters 2017-06, Vol.92, p.41-48 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33 |
container_end_page | 48 |
container_issue | |
container_start_page | 41 |
container_title | Pattern recognition letters |
container_volume | 92 |
creator | Shen, Cencheng Vogelstein, Joshua T. Priebe, Carey E. |
description | •We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching.
Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities. |
doi_str_mv | 10.1016/j.patrec.2017.04.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089730148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016786551730106X</els_id><sourcerecordid>2089730148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwicU5Yx07sXpBQxZ9U1AucLcd2GkepXWwXibfHVThz2b18M7szCN1iqDDg9n6sDjIFo6oaMKuAVgDNGVpgzuqSEUrP0SJjrORt01yiqxhHAGjJii_Q9l062_tJF3uZ1GDdrjjG04yDD8nEVGbrodA2JumUKaTTxeitS4Uzdjd0Pgze6yKayahkvbtGF72corn520v0-fz0sX4tN9uXt_XjplSEQyopZUxLimvCG9MwaJkh-Z-V7CTpOVc9Zh2XtNE9brnWpMZ1S0nHOoaJwpldorvZ9xD81zH_KUZ_DC6fFDXwFSOAKc8UnSkVfIzB9OIQ7F6GH4FBnKoTo5irE6fqBFCRq8uyh1lmcoJva4KIypocX9uMJqG9_d_gF93zeVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089730148</pqid></control><display><type>article</type><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><source>ScienceDirect Freedom Collection</source><creator>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</creator><creatorcontrib>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</creatorcontrib><description>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching.
Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2017.04.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Data analysis ; Data processing ; Datasets ; Embedding ; Euclidean geometry ; Geodesic distance ; Graphs ; Information processing ; k-nearest-neighbor ; Manifolds (mathematics) ; Matching ; Nearest-neighbor ; Nonlinear systems ; Nonlinear transformation ; Pattern recognition ; Seeded graph matching ; Shortest-path problems</subject><ispartof>Pattern recognition letters, 2017-06, Vol.92, p.41-48</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</citedby><cites>FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shen, Cencheng</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Priebe, Carey E.</creatorcontrib><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><title>Pattern recognition letters</title><description>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching.
Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</description><subject>Algorithms</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Euclidean geometry</subject><subject>Geodesic distance</subject><subject>Graphs</subject><subject>Information processing</subject><subject>k-nearest-neighbor</subject><subject>Manifolds (mathematics)</subject><subject>Matching</subject><subject>Nearest-neighbor</subject><subject>Nonlinear systems</subject><subject>Nonlinear transformation</subject><subject>Pattern recognition</subject><subject>Seeded graph matching</subject><subject>Shortest-path problems</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwicU5Yx07sXpBQxZ9U1AucLcd2GkepXWwXibfHVThz2b18M7szCN1iqDDg9n6sDjIFo6oaMKuAVgDNGVpgzuqSEUrP0SJjrORt01yiqxhHAGjJii_Q9l062_tJF3uZ1GDdrjjG04yDD8nEVGbrodA2JumUKaTTxeitS4Uzdjd0Pgze6yKayahkvbtGF72corn520v0-fz0sX4tN9uXt_XjplSEQyopZUxLimvCG9MwaJkh-Z-V7CTpOVc9Zh2XtNE9brnWpMZ1S0nHOoaJwpldorvZ9xD81zH_KUZ_DC6fFDXwFSOAKc8UnSkVfIzB9OIQ7F6GH4FBnKoTo5irE6fqBFCRq8uyh1lmcoJva4KIypocX9uMJqG9_d_gF93zeVI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Shen, Cencheng</creator><creator>Vogelstein, Joshua T.</creator><creator>Priebe, Carey E.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Manifold matching using shortest-path distance and joint neighborhood selection</title><author>Shen, Cencheng ; Vogelstein, Joshua T. ; Priebe, Carey E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Euclidean geometry</topic><topic>Geodesic distance</topic><topic>Graphs</topic><topic>Information processing</topic><topic>k-nearest-neighbor</topic><topic>Manifolds (mathematics)</topic><topic>Matching</topic><topic>Nearest-neighbor</topic><topic>Nonlinear systems</topic><topic>Nonlinear transformation</topic><topic>Pattern recognition</topic><topic>Seeded graph matching</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Cencheng</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Priebe, Carey E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Cencheng</au><au>Vogelstein, Joshua T.</au><au>Priebe, Carey E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manifold matching using shortest-path distance and joint neighborhood selection</atitle><jtitle>Pattern recognition letters</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>92</volume><spage>41</spage><epage>48</epage><pages>41-48</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We propose a new manifold matching method, that is superior than existing methods based on single modality.•Our method is robust against noise and different types of geometry in matching.•The method is particularly useful for graph and network matching.
Matching datasets of multiple modalities has become an important task in data analysis. Existing methods often rely on the embedding and transformation of each single modality without utilizing any correspondence information, which often results in sub-optimal matching performance. In this paper, we propose a nonlinear manifold matching algorithm using shortest-path distance and joint neighborhood selection. Specifically, a joint nearest-neighbor graph is built for all modalities. Then the shortest-path distance within each modality is calculated from the joint neighborhood graph, followed by embedding into and matching in a common low-dimensional Euclidean space. Compared to existing algorithms, our approach exhibits superior performance for matching disparate datasets of multiple modalities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2017.04.005</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2017-06, Vol.92, p.41-48 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2089730148 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Data analysis Data processing Datasets Embedding Euclidean geometry Geodesic distance Graphs Information processing k-nearest-neighbor Manifolds (mathematics) Matching Nearest-neighbor Nonlinear systems Nonlinear transformation Pattern recognition Seeded graph matching Shortest-path problems |
title | Manifold matching using shortest-path distance and joint neighborhood selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manifold%20matching%20using%20shortest-path%20distance%20and%20joint%20neighborhood%20selection&rft.jtitle=Pattern%20recognition%20letters&rft.au=Shen,%20Cencheng&rft.date=2017-06-01&rft.volume=92&rft.spage=41&rft.epage=48&rft.pages=41-48&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2017.04.005&rft_dat=%3Cproquest_cross%3E2089730148%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-4477da412385e57067e33989aba3f88cf17b8a45df168dd3212643b7b713c1e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089730148&rft_id=info:pmid/&rfr_iscdi=true |