Loading…

Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD

This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the c...

Full description

Saved in:
Bibliographic Details
Published in:Process safety and environmental protection 2017-07, Vol.109, p.489-508
Main Authors: Li, Jingde, Hernandez, Francisco, Hao, Hong, Fang, Qin, Xiang, Hengbo, Li, Zhan, Zhang, Xihong, Chen, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3
cites cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3
container_end_page 508
container_issue
container_start_page 489
container_title Process safety and environmental protection
container_volume 109
creator Li, Jingde
Hernandez, Francisco
Hao, Hong
Fang, Qin
Xiang, Hengbo
Li, Zhan
Zhang, Xihong
Chen, Li
description This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.
doi_str_mv 10.1016/j.psep.2017.04.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089731160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582017301428</els_id><sourcerecordid>2089731160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmBPOjlM7EksVKCAVdQEGFstJzqqjNAl2WsHGQ_CEPAmuysx0Ot3_3Z0-Qi4pJBTo7LpJBo9DwoCKBHgCLDsiEyo4j9Msl8dkAnkm4kwyOCVn3jcAQJmgE_L2it2IdfSE41p3GGvroruPoe297btotUM3OPR-6zAqdFttWz2Gwc_X9zzydjO01thA62Fwva7WUal9aANZLG7PyYnRrceLvzolL4u75-IhXq7uH4v5Mq5SwcYYMy5FyaSppQas89IYrCnnoLkxszKXklW5YUbmIk05lEJqg5wxytCInGI6JVeHveGH9y36UTX91nXhpGKwpyidQUixQ6pyvfcOjRqc3Wj3qSiovUPVqL1DtXeogKvgMEA3BwjD_zuLTvnKYldhbR1Wo6p7-x_-C7EkfCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089731160</pqid></control><display><type>article</type><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</creator><creatorcontrib>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</creatorcontrib><description>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2017.04.025</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Aerodynamics ; Burning ; Combustion ; Computer simulation ; Correlation analysis ; Enclosures ; Explosions ; Gas explosions ; Mathematical models ; Methane ; Methane-air explosion ; Overpressure ; Peak overpressure ; Studies ; Turbulence ; Velocity ; Vent activation ; Vent area ; Vented gas explosion</subject><ispartof>Process safety and environmental protection, 2017-07, Vol.109, p.489-508</ispartof><rights>2017 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</citedby><cites>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</cites><orcidid>0000-0001-9028-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Jingde</creatorcontrib><creatorcontrib>Hernandez, Francisco</creatorcontrib><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Fang, Qin</creatorcontrib><creatorcontrib>Xiang, Hengbo</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Zhang, Xihong</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><title>Process safety and environmental protection</title><description>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</description><subject>Aerodynamics</subject><subject>Burning</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Enclosures</subject><subject>Explosions</subject><subject>Gas explosions</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane-air explosion</subject><subject>Overpressure</subject><subject>Peak overpressure</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vent activation</subject><subject>Vent area</subject><subject>Vented gas explosion</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmBPOjlM7EksVKCAVdQEGFstJzqqjNAl2WsHGQ_CEPAmuysx0Ot3_3Z0-Qi4pJBTo7LpJBo9DwoCKBHgCLDsiEyo4j9Msl8dkAnkm4kwyOCVn3jcAQJmgE_L2it2IdfSE41p3GGvroruPoe297btotUM3OPR-6zAqdFttWz2Gwc_X9zzydjO01thA62Fwva7WUal9aANZLG7PyYnRrceLvzolL4u75-IhXq7uH4v5Mq5SwcYYMy5FyaSppQas89IYrCnnoLkxszKXklW5YUbmIk05lEJqg5wxytCInGI6JVeHveGH9y36UTX91nXhpGKwpyidQUixQ6pyvfcOjRqc3Wj3qSiovUPVqL1DtXeogKvgMEA3BwjD_zuLTvnKYldhbR1Wo6p7-x_-C7EkfCk</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Li, Jingde</creator><creator>Hernandez, Francisco</creator><creator>Hao, Hong</creator><creator>Fang, Qin</creator><creator>Xiang, Hengbo</creator><creator>Li, Zhan</creator><creator>Zhang, Xihong</creator><creator>Chen, Li</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9028-7073</orcidid></search><sort><creationdate>20170701</creationdate><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><author>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Burning</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Enclosures</topic><topic>Explosions</topic><topic>Gas explosions</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane-air explosion</topic><topic>Overpressure</topic><topic>Peak overpressure</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vent activation</topic><topic>Vent area</topic><topic>Vented gas explosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingde</creatorcontrib><creatorcontrib>Hernandez, Francisco</creatorcontrib><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Fang, Qin</creatorcontrib><creatorcontrib>Xiang, Hengbo</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Zhang, Xihong</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingde</au><au>Hernandez, Francisco</au><au>Hao, Hong</au><au>Fang, Qin</au><au>Xiang, Hengbo</au><au>Li, Zhan</au><au>Zhang, Xihong</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</atitle><jtitle>Process safety and environmental protection</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>109</volume><spage>489</spage><epage>508</epage><pages>489-508</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2017.04.025</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9028-7073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-5820
ispartof Process safety and environmental protection, 2017-07, Vol.109, p.489-508
issn 0957-5820
1744-3598
language eng
recordid cdi_proquest_journals_2089731160
source ScienceDirect Freedom Collection 2022-2024
subjects Aerodynamics
Burning
Combustion
Computer simulation
Correlation analysis
Enclosures
Explosions
Gas explosions
Mathematical models
Methane
Methane-air explosion
Overpressure
Peak overpressure
Studies
Turbulence
Velocity
Vent activation
Vent area
Vented gas explosion
title Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vented%20Methane-air%20Explosion%20Overpressure%20Calculation%E2%80%94A%20simplified%20approach%20based%20on%20CFD&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Li,%20Jingde&rft.date=2017-07-01&rft.volume=109&rft.spage=489&rft.epage=508&rft.pages=489-508&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2017.04.025&rft_dat=%3Cproquest_cross%3E2089731160%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089731160&rft_id=info:pmid/&rfr_iscdi=true