Loading…
Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD
This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the c...
Saved in:
Published in: | Process safety and environmental protection 2017-07, Vol.109, p.489-508 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3 |
container_end_page | 508 |
container_issue | |
container_start_page | 489 |
container_title | Process safety and environmental protection |
container_volume | 109 |
creator | Li, Jingde Hernandez, Francisco Hao, Hong Fang, Qin Xiang, Hengbo Li, Zhan Zhang, Xihong Chen, Li |
description | This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition. |
doi_str_mv | 10.1016/j.psep.2017.04.025 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089731160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582017301428</els_id><sourcerecordid>2089731160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmBPOjlM7EksVKCAVdQEGFstJzqqjNAl2WsHGQ_CEPAmuysx0Ot3_3Z0-Qi4pJBTo7LpJBo9DwoCKBHgCLDsiEyo4j9Msl8dkAnkm4kwyOCVn3jcAQJmgE_L2it2IdfSE41p3GGvroruPoe297btotUM3OPR-6zAqdFttWz2Gwc_X9zzydjO01thA62Fwva7WUal9aANZLG7PyYnRrceLvzolL4u75-IhXq7uH4v5Mq5SwcYYMy5FyaSppQas89IYrCnnoLkxszKXklW5YUbmIk05lEJqg5wxytCInGI6JVeHveGH9y36UTX91nXhpGKwpyidQUixQ6pyvfcOjRqc3Wj3qSiovUPVqL1DtXeogKvgMEA3BwjD_zuLTvnKYldhbR1Wo6p7-x_-C7EkfCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089731160</pqid></control><display><type>article</type><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</creator><creatorcontrib>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</creatorcontrib><description>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2017.04.025</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Aerodynamics ; Burning ; Combustion ; Computer simulation ; Correlation analysis ; Enclosures ; Explosions ; Gas explosions ; Mathematical models ; Methane ; Methane-air explosion ; Overpressure ; Peak overpressure ; Studies ; Turbulence ; Velocity ; Vent activation ; Vent area ; Vented gas explosion</subject><ispartof>Process safety and environmental protection, 2017-07, Vol.109, p.489-508</ispartof><rights>2017 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</citedby><cites>FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</cites><orcidid>0000-0001-9028-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Jingde</creatorcontrib><creatorcontrib>Hernandez, Francisco</creatorcontrib><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Fang, Qin</creatorcontrib><creatorcontrib>Xiang, Hengbo</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Zhang, Xihong</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><title>Process safety and environmental protection</title><description>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</description><subject>Aerodynamics</subject><subject>Burning</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Enclosures</subject><subject>Explosions</subject><subject>Gas explosions</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane-air explosion</subject><subject>Overpressure</subject><subject>Peak overpressure</subject><subject>Studies</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vent activation</subject><subject>Vent area</subject><subject>Vented gas explosion</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmBPOjlM7EksVKCAVdQEGFstJzqqjNAl2WsHGQ_CEPAmuysx0Ot3_3Z0-Qi4pJBTo7LpJBo9DwoCKBHgCLDsiEyo4j9Msl8dkAnkm4kwyOCVn3jcAQJmgE_L2it2IdfSE41p3GGvroruPoe297btotUM3OPR-6zAqdFttWz2Gwc_X9zzydjO01thA62Fwva7WUal9aANZLG7PyYnRrceLvzolL4u75-IhXq7uH4v5Mq5SwcYYMy5FyaSppQas89IYrCnnoLkxszKXklW5YUbmIk05lEJqg5wxytCInGI6JVeHveGH9y36UTX91nXhpGKwpyidQUixQ6pyvfcOjRqc3Wj3qSiovUPVqL1DtXeogKvgMEA3BwjD_zuLTvnKYldhbR1Wo6p7-x_-C7EkfCk</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Li, Jingde</creator><creator>Hernandez, Francisco</creator><creator>Hao, Hong</creator><creator>Fang, Qin</creator><creator>Xiang, Hengbo</creator><creator>Li, Zhan</creator><creator>Zhang, Xihong</creator><creator>Chen, Li</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9028-7073</orcidid></search><sort><creationdate>20170701</creationdate><title>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</title><author>Li, Jingde ; Hernandez, Francisco ; Hao, Hong ; Fang, Qin ; Xiang, Hengbo ; Li, Zhan ; Zhang, Xihong ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Burning</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Enclosures</topic><topic>Explosions</topic><topic>Gas explosions</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane-air explosion</topic><topic>Overpressure</topic><topic>Peak overpressure</topic><topic>Studies</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vent activation</topic><topic>Vent area</topic><topic>Vented gas explosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingde</creatorcontrib><creatorcontrib>Hernandez, Francisco</creatorcontrib><creatorcontrib>Hao, Hong</creatorcontrib><creatorcontrib>Fang, Qin</creatorcontrib><creatorcontrib>Xiang, Hengbo</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Zhang, Xihong</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingde</au><au>Hernandez, Francisco</au><au>Hao, Hong</au><au>Fang, Qin</au><au>Xiang, Hengbo</au><au>Li, Zhan</au><au>Zhang, Xihong</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD</atitle><jtitle>Process safety and environmental protection</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>109</volume><spage>489</spage><epage>508</epage><pages>489-508</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>This paper presents new correlations developed through numerical simulations to estimate peak overpressures for vented methane-air explosions in cylindrical enclosures. A series of experimental tests are carried out first and the results are used to validate the numerical models developed with the commercial CFD software FLACS. More than 350 simulations consisting of 16 enclosure scales, 12 vent area to enclosure roof area ratios, 8 gas equivalence ratios and 9 vent activation pressures are then carried out to develop the Vented Methane-air Explosion Overpressure Calculation (VMEOC) correlations. Parameters associated with burning velocity and turbulence generation, oscillatory combustion and flame instabilities in vented gas explosion are taken into account in the development of new correlations. Comparing to CFD simulations, the VMEOC correlations provide a faster way to estimate the peak overpressure of a vented explosion. Additionally, it is proved in this study that the VMEOC correlations are easier to use and more accurate than the equations given in the up-to-date industrial standard- NFPA-68 2013 edition.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2017.04.025</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9028-7073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2017-07, Vol.109, p.489-508 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_proquest_journals_2089731160 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Aerodynamics Burning Combustion Computer simulation Correlation analysis Enclosures Explosions Gas explosions Mathematical models Methane Methane-air explosion Overpressure Peak overpressure Studies Turbulence Velocity Vent activation Vent area Vented gas explosion |
title | Vented Methane-air Explosion Overpressure Calculation—A simplified approach based on CFD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vented%20Methane-air%20Explosion%20Overpressure%20Calculation%E2%80%94A%20simplified%20approach%20based%20on%20CFD&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Li,%20Jingde&rft.date=2017-07-01&rft.volume=109&rft.spage=489&rft.epage=508&rft.pages=489-508&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2017.04.025&rft_dat=%3Cproquest_cross%3E2089731160%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e5487b28fd8a0ed9bffed1440a4ff6b9882c9f2f8973340b78afe42212ef791e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089731160&rft_id=info:pmid/&rfr_iscdi=true |