Loading…

Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework

A method based on the combination of Local Binary Pattern operator and radial lengths is presented aiming at the identification of Architectural Distortions (ADs) in mammograms. Local Binary Pattern operator, a number of its variants, and radial lengths are combined together producing a high‐dimensi...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2018-08, Vol.35 (4), p.n/a
Main Authors: Chatzistergos, Sevastianos E., Andreadis, Ioannis, Nikita, Konstantina S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3031-380a4a7d0d5e19e7686d6991e2fb6feb5a325a8f7a7573e983cec5b2227efb1c3
container_end_page n/a
container_issue 4
container_start_page
container_title Expert systems
container_volume 35
creator Chatzistergos, Sevastianos E.
Andreadis, Ioannis
Nikita, Konstantina S.
description A method based on the combination of Local Binary Pattern operator and radial lengths is presented aiming at the identification of Architectural Distortions (ADs) in mammograms. Local Binary Pattern operator, a number of its variants, and radial lengths are combined together producing a high‐dimensional feature space. A process, based on the combination of Principal Component Analysis and ttest, is used to effectively transform feature space and reveal the most descriptive features. The classification step is performed using a Support Vector Machine classifier. Open access databases (Mammographic Image Analysis Society and Digital Database for Screening Mammography) are used through an exhaustive evaluation framework that aims at eliminating both mammogram selection bias and limited subtlety variation, thus enabling a fair and complete comparison procedure. Furthermore, in order to provide a test bed for future comparisons, a dataset is constructed from all the available AD Regions Of Interest in Digital Database for Screening Mammography (163 AD vs 375 Regions Of Interest from specific normal cases) and is used to further evaluate the performance of the proposed method. The method performed flawlessly and classified correctly all cases.
doi_str_mv 10.1111/exsy.12281
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089743024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089743024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3031-380a4a7d0d5e19e7686d6991e2fb6feb5a325a8f7a7573e983cec5b2227efb1c3</originalsourceid><addsrcrecordid>eNp9kM1O5DAQhC20SMwCF57AEjekgH-SODmuELuLhMQBkOAUdZz2xJDEg-0A8xy8MJ7NnulLH-rrKnURcsLZOU9zgR9he86FqPgeWfG8rDIm6_wHWTFRllmuBDsgP0N4ZoxxpcoV-bzucIrWWA3Ruok6Q8Hr3kbUcfYw0M6G6PxOC9ROdIRxdGsPY6BzsNOaDk4nqrUT-C3dQIzoEwlTRz10NkkDTuvYBxp77-Z1nySKHz3MIdo3pPgGw7xEm-SK786_HJF9A0PA4__7kDz8vrq__Jvd3P65vvx1k2nJJM9kxSAH1bGuQF6jKquyK-uaozBtabAtQIoCKqNAFUpiXUmNumiFEApNy7U8JKeL78a71xlDbJ7d7KcU2QhW1SqXTOSJOlso7V0IHk2z8XZM3zacNbvSm13pzb_SE8wX-N0OuP2GbK4e756Wmy-B9omk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089743024</pqid></control><display><type>article</type><title>Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework</title><source>Wiley</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Chatzistergos, Sevastianos E. ; Andreadis, Ioannis ; Nikita, Konstantina S.</creator><creatorcontrib>Chatzistergos, Sevastianos E. ; Andreadis, Ioannis ; Nikita, Konstantina S.</creatorcontrib><description>A method based on the combination of Local Binary Pattern operator and radial lengths is presented aiming at the identification of Architectural Distortions (ADs) in mammograms. Local Binary Pattern operator, a number of its variants, and radial lengths are combined together producing a high‐dimensional feature space. A process, based on the combination of Principal Component Analysis and ttest, is used to effectively transform feature space and reveal the most descriptive features. The classification step is performed using a Support Vector Machine classifier. Open access databases (Mammographic Image Analysis Society and Digital Database for Screening Mammography) are used through an exhaustive evaluation framework that aims at eliminating both mammogram selection bias and limited subtlety variation, thus enabling a fair and complete comparison procedure. Furthermore, in order to provide a test bed for future comparisons, a dataset is constructed from all the available AD Regions Of Interest in Digital Database for Screening Mammography (163 AD vs 375 Regions Of Interest from specific normal cases) and is used to further evaluate the performance of the proposed method. The method performed flawlessly and classified correctly all cases.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12281</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>architectural distortion (AD) ; Digital imaging ; Image analysis ; Local Binary Pattern (LBP) ; mammogram ; Online data bases ; Performance evaluation ; Principal Component Analysis (PCA) ; Principal components analysis ; Screening ; Student's t-test ; Support vector machines ; t test ; texture classification</subject><ispartof>Expert systems, 2018-08, Vol.35 (4), p.n/a</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3031-380a4a7d0d5e19e7686d6991e2fb6feb5a325a8f7a7573e983cec5b2227efb1c3</cites><orcidid>0000-0001-9052-9693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Chatzistergos, Sevastianos E.</creatorcontrib><creatorcontrib>Andreadis, Ioannis</creatorcontrib><creatorcontrib>Nikita, Konstantina S.</creatorcontrib><title>Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework</title><title>Expert systems</title><description>A method based on the combination of Local Binary Pattern operator and radial lengths is presented aiming at the identification of Architectural Distortions (ADs) in mammograms. Local Binary Pattern operator, a number of its variants, and radial lengths are combined together producing a high‐dimensional feature space. A process, based on the combination of Principal Component Analysis and ttest, is used to effectively transform feature space and reveal the most descriptive features. The classification step is performed using a Support Vector Machine classifier. Open access databases (Mammographic Image Analysis Society and Digital Database for Screening Mammography) are used through an exhaustive evaluation framework that aims at eliminating both mammogram selection bias and limited subtlety variation, thus enabling a fair and complete comparison procedure. Furthermore, in order to provide a test bed for future comparisons, a dataset is constructed from all the available AD Regions Of Interest in Digital Database for Screening Mammography (163 AD vs 375 Regions Of Interest from specific normal cases) and is used to further evaluate the performance of the proposed method. The method performed flawlessly and classified correctly all cases.</description><subject>architectural distortion (AD)</subject><subject>Digital imaging</subject><subject>Image analysis</subject><subject>Local Binary Pattern (LBP)</subject><subject>mammogram</subject><subject>Online data bases</subject><subject>Performance evaluation</subject><subject>Principal Component Analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Screening</subject><subject>Student's t-test</subject><subject>Support vector machines</subject><subject>t test</subject><subject>texture classification</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O5DAQhC20SMwCF57AEjekgH-SODmuELuLhMQBkOAUdZz2xJDEg-0A8xy8MJ7NnulLH-rrKnURcsLZOU9zgR9he86FqPgeWfG8rDIm6_wHWTFRllmuBDsgP0N4ZoxxpcoV-bzucIrWWA3Ruok6Q8Hr3kbUcfYw0M6G6PxOC9ROdIRxdGsPY6BzsNOaDk4nqrUT-C3dQIzoEwlTRz10NkkDTuvYBxp77-Z1nySKHz3MIdo3pPgGw7xEm-SK786_HJF9A0PA4__7kDz8vrq__Jvd3P65vvx1k2nJJM9kxSAH1bGuQF6jKquyK-uaozBtabAtQIoCKqNAFUpiXUmNumiFEApNy7U8JKeL78a71xlDbJ7d7KcU2QhW1SqXTOSJOlso7V0IHk2z8XZM3zacNbvSm13pzb_SE8wX-N0OuP2GbK4e756Wmy-B9omk</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Chatzistergos, Sevastianos E.</creator><creator>Andreadis, Ioannis</creator><creator>Nikita, Konstantina S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9052-9693</orcidid></search><sort><creationdate>201808</creationdate><title>Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework</title><author>Chatzistergos, Sevastianos E. ; Andreadis, Ioannis ; Nikita, Konstantina S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3031-380a4a7d0d5e19e7686d6991e2fb6feb5a325a8f7a7573e983cec5b2227efb1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>architectural distortion (AD)</topic><topic>Digital imaging</topic><topic>Image analysis</topic><topic>Local Binary Pattern (LBP)</topic><topic>mammogram</topic><topic>Online data bases</topic><topic>Performance evaluation</topic><topic>Principal Component Analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Screening</topic><topic>Student's t-test</topic><topic>Support vector machines</topic><topic>t test</topic><topic>texture classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatzistergos, Sevastianos E.</creatorcontrib><creatorcontrib>Andreadis, Ioannis</creatorcontrib><creatorcontrib>Nikita, Konstantina S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatzistergos, Sevastianos E.</au><au>Andreadis, Ioannis</au><au>Nikita, Konstantina S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework</atitle><jtitle>Expert systems</jtitle><date>2018-08</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>A method based on the combination of Local Binary Pattern operator and radial lengths is presented aiming at the identification of Architectural Distortions (ADs) in mammograms. Local Binary Pattern operator, a number of its variants, and radial lengths are combined together producing a high‐dimensional feature space. A process, based on the combination of Principal Component Analysis and ttest, is used to effectively transform feature space and reveal the most descriptive features. The classification step is performed using a Support Vector Machine classifier. Open access databases (Mammographic Image Analysis Society and Digital Database for Screening Mammography) are used through an exhaustive evaluation framework that aims at eliminating both mammogram selection bias and limited subtlety variation, thus enabling a fair and complete comparison procedure. Furthermore, in order to provide a test bed for future comparisons, a dataset is constructed from all the available AD Regions Of Interest in Digital Database for Screening Mammography (163 AD vs 375 Regions Of Interest from specific normal cases) and is used to further evaluate the performance of the proposed method. The method performed flawlessly and classified correctly all cases.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12281</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9052-9693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2018-08, Vol.35 (4), p.n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_2089743024
source Wiley; BSC - Ebsco (Business Source Ultimate)
subjects architectural distortion (AD)
Digital imaging
Image analysis
Local Binary Pattern (LBP)
mammogram
Online data bases
Performance evaluation
Principal Component Analysis (PCA)
Principal components analysis
Screening
Student's t-test
Support vector machines
t test
texture classification
title Identification of architectural distortions in mammograms using local binary patterns and radial lengths through an exhaustive evaluation framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20architectural%20distortions%20in%20mammograms%20using%20local%20binary%20patterns%20and%20radial%20lengths%20through%20an%20exhaustive%20evaluation%20framework&rft.jtitle=Expert%20systems&rft.au=Chatzistergos,%20Sevastianos%20E.&rft.date=2018-08&rft.volume=35&rft.issue=4&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12281&rft_dat=%3Cproquest_cross%3E2089743024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3031-380a4a7d0d5e19e7686d6991e2fb6feb5a325a8f7a7573e983cec5b2227efb1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089743024&rft_id=info:pmid/&rfr_iscdi=true