Loading…
Reflection multi‐scale envelope inversion
ABSTRACT Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components co...
Saved in:
Published in: | Geophysical Prospecting 2018-09, Vol.66 (7), p.1258-1271 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3 |
container_end_page | 1271 |
container_issue | 7 |
container_start_page | 1258 |
container_title | Geophysical Prospecting |
container_volume | 66 |
creator | Chen, Guo‐Xin Wu, Ru‐Shan Chen, Sheng‐Chang |
description | ABSTRACT
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential. |
doi_str_mv | 10.1111/1365-2478.12624 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089779008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089779008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdRMFbPXgMeJe3s_81RilahoBQ9LzGdhZRtEncbpTcfwWfsk5gY8epcZhh-3wzfR8glhSnta0a5khkT2kwpU0wckeRvc0wSAKoyA0yekrMYNwAcpBQJuV6h81juqqZOt53fVYfPr1gWHlOs39E3LaZVP4TYA-fkxBU-4sVvn5CXu9vn-X22fFw8zG-WWcmlEpkUUhUCXOF0-UodKKMoclHotRKgQeWUS4bSMM2MQWEERemkNiZnYq14ySfkarzbhuatw7izm6YLdf_SMjC51jmA6anZSJWhiTGgs22otkXYWwp2SMQO_u3g3_4k0ivkqPioPO7_w-3iaTXqvgE9TWC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089779008</pqid></control><display><type>article</type><title>Reflection multi‐scale envelope inversion</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, Guo‐Xin ; Wu, Ru‐Shan ; Chen, Sheng‐Chang</creator><creatorcontrib>Chen, Guo‐Xin ; Wu, Ru‐Shan ; Chen, Sheng‐Chang</creatorcontrib><description>ABSTRACT
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12624</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Acoustics ; Components ; Dependence ; Full waveform ; Inversion ; Mathematical models ; Migration ; Reflected waves ; Reflection ; Reflectors ; Seismic data ; Wave reflection ; Wavelength</subject><ispartof>Geophysical Prospecting, 2018-09, Vol.66 (7), p.1258-1271</ispartof><rights>2018 European Association of Geoscientists & Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3</citedby><cites>FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Guo‐Xin</creatorcontrib><creatorcontrib>Wu, Ru‐Shan</creatorcontrib><creatorcontrib>Chen, Sheng‐Chang</creatorcontrib><title>Reflection multi‐scale envelope inversion</title><title>Geophysical Prospecting</title><description>ABSTRACT
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.</description><subject>Acoustics</subject><subject>Components</subject><subject>Dependence</subject><subject>Full waveform</subject><subject>Inversion</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Reflected waves</subject><subject>Reflection</subject><subject>Reflectors</subject><subject>Seismic data</subject><subject>Wave reflection</subject><subject>Wavelength</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdRMFbPXgMeJe3s_81RilahoBQ9LzGdhZRtEncbpTcfwWfsk5gY8epcZhh-3wzfR8glhSnta0a5khkT2kwpU0wckeRvc0wSAKoyA0yekrMYNwAcpBQJuV6h81juqqZOt53fVYfPr1gWHlOs39E3LaZVP4TYA-fkxBU-4sVvn5CXu9vn-X22fFw8zG-WWcmlEpkUUhUCXOF0-UodKKMoclHotRKgQeWUS4bSMM2MQWEERemkNiZnYq14ySfkarzbhuatw7izm6YLdf_SMjC51jmA6anZSJWhiTGgs22otkXYWwp2SMQO_u3g3_4k0ivkqPioPO7_w-3iaTXqvgE9TWC9</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Chen, Guo‐Xin</creator><creator>Wu, Ru‐Shan</creator><creator>Chen, Sheng‐Chang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201809</creationdate><title>Reflection multi‐scale envelope inversion</title><author>Chen, Guo‐Xin ; Wu, Ru‐Shan ; Chen, Sheng‐Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Components</topic><topic>Dependence</topic><topic>Full waveform</topic><topic>Inversion</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Reflected waves</topic><topic>Reflection</topic><topic>Reflectors</topic><topic>Seismic data</topic><topic>Wave reflection</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guo‐Xin</creatorcontrib><creatorcontrib>Wu, Ru‐Shan</creatorcontrib><creatorcontrib>Chen, Sheng‐Chang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guo‐Xin</au><au>Wu, Ru‐Shan</au><au>Chen, Sheng‐Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflection multi‐scale envelope inversion</atitle><jtitle>Geophysical Prospecting</jtitle><date>2018-09</date><risdate>2018</risdate><volume>66</volume><issue>7</issue><spage>1258</spage><epage>1271</epage><pages>1258-1271</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12624</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2018-09, Vol.66 (7), p.1258-1271 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_journals_2089779008 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acoustics Components Dependence Full waveform Inversion Mathematical models Migration Reflected waves Reflection Reflectors Seismic data Wave reflection Wavelength |
title | Reflection multi‐scale envelope inversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflection%20multi%E2%80%90scale%20envelope%20inversion&rft.jtitle=Geophysical%20Prospecting&rft.au=Chen,%20Guo%E2%80%90Xin&rft.date=2018-09&rft.volume=66&rft.issue=7&rft.spage=1258&rft.epage=1271&rft.pages=1258-1271&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12624&rft_dat=%3Cproquest_cross%3E2089779008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3564-5456a40faf7cb1f06861e34a7d64070691352e5827288e4841e5f5788924d63c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089779008&rft_id=info:pmid/&rfr_iscdi=true |