Loading…

Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function

Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality. Hepatocytes are anchorage-dependent cells, and mem...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2018-08, Vol.8 (51), p.2978-2988
Main Authors: Verma, Surendra Kumar, Modi, Akshay, Dravid, Ashwin, Bellare, Jayesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773
cites cdi_FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773
container_end_page 2988
container_issue 51
container_start_page 2978
container_title RSC advances
container_volume 8
creator Verma, Surendra Kumar
Modi, Akshay
Dravid, Ashwin
Bellare, Jayesh
description Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality. Hepatocytes are anchorage-dependent cells, and membrane surface modification enhances the hepatic cell adhesion and proliferation. Specific interaction of the asialoglycoprotein receptor on hepatocyte cell surfaces with a galactose moiety enhances the attachment of the cells on a biocompatible substrate. In this study, the outer surface of the polyethersulfone (P) hollow fiber membranes (HFMs) was chemically modified by covalent coupling with lactobionic acid (LBA). The energy dispersive X-ray spectrometry elemental mapping, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed the LBA-coupling on the outer surface of P-LBA HFMs. Hemocompatibility study indicated the suitability of the modified membranes with human blood. These membranes showed remarkably improved biocompatibility with human primary mesenchymal stem cells and HepG2 cells. Characteristic multi-cellular spheroids of HepG2 cells were observed under scanning electron and confocal microscopy. HepG2 cell functional activity was measured by quantifying the urea synthesis, albumin secretion and glucose consumption in the culture media, which indicated the improved HepG2 functions. These experimental results clearly suggest the potentiality of these LBA-modified P HFMs as a suitable biocompatible substrate for promoting HepG2 attachment and function leading to their application in bioreactors and bio-artificial liver devices. Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality.
doi_str_mv 10.1039/c8ra02282h
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2089788672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089788672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773</originalsourceid><addsrcrecordid>eNpdks1rFTEUxYMotrTduFcCbkSYNpPv2QjlYfuEB0LRdchk7jgpmcmYzCj1rzf1tc9qNjfh_jicm3MRelWT85qw5sLpZAmlmg7P0DElXFaUyOb5k_sROsv5lpQjRU1l_RIdMSFYIxtxjMaddUtsfZy8w9b5rurXyS3lbYP_BR2eY7iDZYCU19DHCfAQQ4g_ce9bSHiEsU12goznFMe4AN7CfE2xXRbrhhGmBdupw4-ap-hFb0OGs4d6gr5effyy2Va7z9efNpe7ynGql0oJBYoDs84B0F7JuqO2VlJ1jjmppADlWE84UbWQDZGactoqcK6hLe-VYifow153XtsROld8JBvMnPxo052J1pt_O5MfzLf4wzREcyZkEXj3IJDi9xXyYkafHYRQZo1rNlRKKjgvVgr69j_0Nq6pfF-hiG6U1lLRQr3fUy7FnBP0BzM1MfdBmo2-ufwT5LbAb57aP6CPsRXg9R5I2R26fzeB_QaT0qTO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089788672</pqid></control><display><type>article</type><title>Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function</title><source>PubMed (Medline)</source><creator>Verma, Surendra Kumar ; Modi, Akshay ; Dravid, Ashwin ; Bellare, Jayesh</creator><creatorcontrib>Verma, Surendra Kumar ; Modi, Akshay ; Dravid, Ashwin ; Bellare, Jayesh</creatorcontrib><description>Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality. Hepatocytes are anchorage-dependent cells, and membrane surface modification enhances the hepatic cell adhesion and proliferation. Specific interaction of the asialoglycoprotein receptor on hepatocyte cell surfaces with a galactose moiety enhances the attachment of the cells on a biocompatible substrate. In this study, the outer surface of the polyethersulfone (P) hollow fiber membranes (HFMs) was chemically modified by covalent coupling with lactobionic acid (LBA). The energy dispersive X-ray spectrometry elemental mapping, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed the LBA-coupling on the outer surface of P-LBA HFMs. Hemocompatibility study indicated the suitability of the modified membranes with human blood. These membranes showed remarkably improved biocompatibility with human primary mesenchymal stem cells and HepG2 cells. Characteristic multi-cellular spheroids of HepG2 cells were observed under scanning electron and confocal microscopy. HepG2 cell functional activity was measured by quantifying the urea synthesis, albumin secretion and glucose consumption in the culture media, which indicated the improved HepG2 functions. These experimental results clearly suggest the potentiality of these LBA-modified P HFMs as a suitable biocompatible substrate for promoting HepG2 attachment and function leading to their application in bioreactors and bio-artificial liver devices. Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra02282h</identifier><identifier>PMID: 35539695</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Attachment ; Biocompatibility ; Bioreactors ; Cell adhesion ; Cell adhesion &amp; migration ; Chemistry ; Coupling ; Fourier transforms ; Galactose ; Hollow fiber membranes ; Liver ; Organic chemistry ; Polyethersulfones ; Reflectance ; Scanning transmission electron microscopy ; Spheroids ; Stem cells ; Substrates ; X ray photoelectron spectroscopy</subject><ispartof>RSC advances, 2018-08, Vol.8 (51), p.2978-2988</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773</citedby><cites>FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773</cites><orcidid>0000-0002-0885-6837 ; 0000-0002-6792-8327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35539695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Surendra Kumar</creatorcontrib><creatorcontrib>Modi, Akshay</creatorcontrib><creatorcontrib>Dravid, Ashwin</creatorcontrib><creatorcontrib>Bellare, Jayesh</creatorcontrib><title>Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality. Hepatocytes are anchorage-dependent cells, and membrane surface modification enhances the hepatic cell adhesion and proliferation. Specific interaction of the asialoglycoprotein receptor on hepatocyte cell surfaces with a galactose moiety enhances the attachment of the cells on a biocompatible substrate. In this study, the outer surface of the polyethersulfone (P) hollow fiber membranes (HFMs) was chemically modified by covalent coupling with lactobionic acid (LBA). The energy dispersive X-ray spectrometry elemental mapping, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed the LBA-coupling on the outer surface of P-LBA HFMs. Hemocompatibility study indicated the suitability of the modified membranes with human blood. These membranes showed remarkably improved biocompatibility with human primary mesenchymal stem cells and HepG2 cells. Characteristic multi-cellular spheroids of HepG2 cells were observed under scanning electron and confocal microscopy. HepG2 cell functional activity was measured by quantifying the urea synthesis, albumin secretion and glucose consumption in the culture media, which indicated the improved HepG2 functions. These experimental results clearly suggest the potentiality of these LBA-modified P HFMs as a suitable biocompatible substrate for promoting HepG2 attachment and function leading to their application in bioreactors and bio-artificial liver devices. Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality.</description><subject>Attachment</subject><subject>Biocompatibility</subject><subject>Bioreactors</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Fourier transforms</subject><subject>Galactose</subject><subject>Hollow fiber membranes</subject><subject>Liver</subject><subject>Organic chemistry</subject><subject>Polyethersulfones</subject><subject>Reflectance</subject><subject>Scanning transmission electron microscopy</subject><subject>Spheroids</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>X ray photoelectron spectroscopy</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdks1rFTEUxYMotrTduFcCbkSYNpPv2QjlYfuEB0LRdchk7jgpmcmYzCj1rzf1tc9qNjfh_jicm3MRelWT85qw5sLpZAmlmg7P0DElXFaUyOb5k_sROsv5lpQjRU1l_RIdMSFYIxtxjMaddUtsfZy8w9b5rurXyS3lbYP_BR2eY7iDZYCU19DHCfAQQ4g_ce9bSHiEsU12goznFMe4AN7CfE2xXRbrhhGmBdupw4-ap-hFb0OGs4d6gr5effyy2Va7z9efNpe7ynGql0oJBYoDs84B0F7JuqO2VlJ1jjmppADlWE84UbWQDZGactoqcK6hLe-VYifow153XtsROld8JBvMnPxo052J1pt_O5MfzLf4wzREcyZkEXj3IJDi9xXyYkafHYRQZo1rNlRKKjgvVgr69j_0Nq6pfF-hiG6U1lLRQr3fUy7FnBP0BzM1MfdBmo2-ufwT5LbAb57aP6CPsRXg9R5I2R26fzeB_QaT0qTO</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Verma, Surendra Kumar</creator><creator>Modi, Akshay</creator><creator>Dravid, Ashwin</creator><creator>Bellare, Jayesh</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0885-6837</orcidid><orcidid>https://orcid.org/0000-0002-6792-8327</orcidid></search><sort><creationdate>20180814</creationdate><title>Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function</title><author>Verma, Surendra Kumar ; Modi, Akshay ; Dravid, Ashwin ; Bellare, Jayesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attachment</topic><topic>Biocompatibility</topic><topic>Bioreactors</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Fourier transforms</topic><topic>Galactose</topic><topic>Hollow fiber membranes</topic><topic>Liver</topic><topic>Organic chemistry</topic><topic>Polyethersulfones</topic><topic>Reflectance</topic><topic>Scanning transmission electron microscopy</topic><topic>Spheroids</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Surendra Kumar</creatorcontrib><creatorcontrib>Modi, Akshay</creatorcontrib><creatorcontrib>Dravid, Ashwin</creatorcontrib><creatorcontrib>Bellare, Jayesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Surendra Kumar</au><au>Modi, Akshay</au><au>Dravid, Ashwin</au><au>Bellare, Jayesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2018-08-14</date><risdate>2018</risdate><volume>8</volume><issue>51</issue><spage>2978</spage><epage>2988</epage><pages>2978-2988</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality. Hepatocytes are anchorage-dependent cells, and membrane surface modification enhances the hepatic cell adhesion and proliferation. Specific interaction of the asialoglycoprotein receptor on hepatocyte cell surfaces with a galactose moiety enhances the attachment of the cells on a biocompatible substrate. In this study, the outer surface of the polyethersulfone (P) hollow fiber membranes (HFMs) was chemically modified by covalent coupling with lactobionic acid (LBA). The energy dispersive X-ray spectrometry elemental mapping, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed the LBA-coupling on the outer surface of P-LBA HFMs. Hemocompatibility study indicated the suitability of the modified membranes with human blood. These membranes showed remarkably improved biocompatibility with human primary mesenchymal stem cells and HepG2 cells. Characteristic multi-cellular spheroids of HepG2 cells were observed under scanning electron and confocal microscopy. HepG2 cell functional activity was measured by quantifying the urea synthesis, albumin secretion and glucose consumption in the culture media, which indicated the improved HepG2 functions. These experimental results clearly suggest the potentiality of these LBA-modified P HFMs as a suitable biocompatible substrate for promoting HepG2 attachment and function leading to their application in bioreactors and bio-artificial liver devices. Surface modification of polyethersulfone hollow fibers, which are important in bio-artificial liver, is increasingly used to improve biocompatibility and promote the adhesion and proliferation of hepatocytes resulting in improved cell functionality.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35539695</pmid><doi>10.1039/c8ra02282h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0885-6837</orcidid><orcidid>https://orcid.org/0000-0002-6792-8327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2018-08, Vol.8 (51), p.2978-2988
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_journals_2089788672
source PubMed (Medline)
subjects Attachment
Biocompatibility
Bioreactors
Cell adhesion
Cell adhesion & migration
Chemistry
Coupling
Fourier transforms
Galactose
Hollow fiber membranes
Liver
Organic chemistry
Polyethersulfones
Reflectance
Scanning transmission electron microscopy
Spheroids
Stem cells
Substrates
X ray photoelectron spectroscopy
title Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactobionic%20acid-functionalized%20polyethersulfone%20hollow%20fiber%20membranes%20promote%20HepG2%20attachment%20and%20function&rft.jtitle=RSC%20advances&rft.au=Verma,%20Surendra%20Kumar&rft.date=2018-08-14&rft.volume=8&rft.issue=51&rft.spage=2978&rft.epage=2988&rft.pages=2978-2988&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra02282h&rft_dat=%3Cproquest_pubme%3E2089788672%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-757e74e3accee2f761d2a1767dc3c6765e7c3f04071569068242b7ecc92b4f773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089788672&rft_id=info:pmid/35539695&rfr_iscdi=true