Loading…
Bound state formation and nature of the excitonic insulator phase in the extended Falicov-Kimball model
Motivated by the possibility of pressure-induced exciton condensation in intermediate-valence Tm[Se,Te] compounds we study the Falicov-Kimball model extended by a finite f-hole valence bandwidth. Calculating the Frenkel-type exciton propagator we obtain excitonic bound states above a characteristic...
Saved in:
Published in: | arXiv.org 2008-09 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivated by the possibility of pressure-induced exciton condensation in intermediate-valence Tm[Se,Te] compounds we study the Falicov-Kimball model extended by a finite f-hole valence bandwidth. Calculating the Frenkel-type exciton propagator we obtain excitonic bound states above a characteristic value of the local interband Coulomb attraction. Depending on the system parameters coherence between c- and f-states may be established at low temperatures, leading to an excitonic insulator phase. We find strong evidence that the excitonic insulator typifies either a BCS condensate of electron-hole pairs (weak-coupling regime) or a Bose-Einstein condensate (BEC) of preformed excitons (strong-coupling regime), which points towards a BCS-BEC transition scenario as Coulomb correlations increase. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0807.4616 |