Loading…
Long-distance quantum key distribution in optical fiber
Use of low-noise detectors can both increase the secret bit rate of long-distance quantum key distribution (QKD) and dramatically extend the length of a fibre optic link over which secure key can be distributed. Previous work has demonstrated use of ultra-low-noise transition-edge sensors (TESs) in...
Saved in:
Published in: | arXiv.org 2006-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Use of low-noise detectors can both increase the secret bit rate of long-distance quantum key distribution (QKD) and dramatically extend the length of a fibre optic link over which secure key can be distributed. Previous work has demonstrated use of ultra-low-noise transition-edge sensors (TESs) in a QKD system with transmission over 50 km. In this work, we demonstrate the potential of the TESs by successfully generating error-corrected, privacy-amplified key over 148.7 km of dark optical fibre at a mean photon number mu = 0.1, or 184.6 km of dark optical fibre at a mean photon number of 0.5. We have also exchanged secret key over 67.5 km that is secure against powerful photon-number-splitting attacks. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0607177 |