Loading…
An automated system for lung nodule detection in low-dose computed tomography
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT sc...
Saved in:
Published in: | arXiv.org 2007-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gori, I Fantacci, M E A Preite Martinez Retico, A |
description | A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed. |
doi_str_mv | 10.48550/arxiv.0704.2728 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089893383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089893383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-310e7d97e5e577d885ad107aa10ef5bf8dae66506a8ebe2ce407e052c3a1b3083</originalsourceid><addsrcrecordid>eNotjc9LwzAYhoMgOObuHgOeW7_ka5r0OIa_YOJl95E2X2dHm9QmVfffO3GnB1543oexOwF5YZSCBzv9dF85aChyqaW5YguJKDJTSHnDVjEeAUCWWiqFC_a29tzOKQw2kePxFBMNvA0T72d_4D64uSfuKFGTuuB553kfvjMXIvEmDOP8Z53tcJjs-HG6Zdet7SOtLlyy3dPjbvOSbd-fXzfrbWaVwAwFkHaVJkVKa2eMsk6Atva8t6pujbNUlgpKa6gm2VABmkDJBq2oEQwu2f3_7TiFz5li2h_DPPlzcS_BVKZCNIi_JtxQGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089893383</pqid></control><display><type>article</type><title>An automated system for lung nodule detection in low-dose computed tomography</title><source>Publicly Available Content Database</source><creator>Gori, I ; Fantacci, M E ; A Preite Martinez ; Retico, A</creator><creatorcontrib>Gori, I ; Fantacci, M E ; A Preite Martinez ; Retico, A</creatorcontrib><description>A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0704.2728</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Computation ; Computed tomography ; Image analysis ; Medical imaging ; Nodules ; Tomography</subject><ispartof>arXiv.org, 2007-04</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0704.2728.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2089893383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gori, I</creatorcontrib><creatorcontrib>Fantacci, M E</creatorcontrib><creatorcontrib>A Preite Martinez</creatorcontrib><creatorcontrib>Retico, A</creatorcontrib><title>An automated system for lung nodule detection in low-dose computed tomography</title><title>arXiv.org</title><description>A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.</description><subject>Automation</subject><subject>Computation</subject><subject>Computed tomography</subject><subject>Image analysis</subject><subject>Medical imaging</subject><subject>Nodules</subject><subject>Tomography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYhoMgOObuHgOeW7_ka5r0OIa_YOJl95E2X2dHm9QmVfffO3GnB1543oexOwF5YZSCBzv9dF85aChyqaW5YguJKDJTSHnDVjEeAUCWWiqFC_a29tzOKQw2kePxFBMNvA0T72d_4D64uSfuKFGTuuB553kfvjMXIvEmDOP8Z53tcJjs-HG6Zdet7SOtLlyy3dPjbvOSbd-fXzfrbWaVwAwFkHaVJkVKa2eMsk6Atva8t6pujbNUlgpKa6gm2VABmkDJBq2oEQwu2f3_7TiFz5li2h_DPPlzcS_BVKZCNIi_JtxQGg</recordid><startdate>20070420</startdate><enddate>20070420</enddate><creator>Gori, I</creator><creator>Fantacci, M E</creator><creator>A Preite Martinez</creator><creator>Retico, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070420</creationdate><title>An automated system for lung nodule detection in low-dose computed tomography</title><author>Gori, I ; Fantacci, M E ; A Preite Martinez ; Retico, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-310e7d97e5e577d885ad107aa10ef5bf8dae66506a8ebe2ce407e052c3a1b3083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Computation</topic><topic>Computed tomography</topic><topic>Image analysis</topic><topic>Medical imaging</topic><topic>Nodules</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Gori, I</creatorcontrib><creatorcontrib>Fantacci, M E</creatorcontrib><creatorcontrib>A Preite Martinez</creatorcontrib><creatorcontrib>Retico, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gori, I</au><au>Fantacci, M E</au><au>A Preite Martinez</au><au>Retico, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automated system for lung nodule detection in low-dose computed tomography</atitle><jtitle>arXiv.org</jtitle><date>2007-04-20</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0704.2728</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2007-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2089893383 |
source | Publicly Available Content Database |
subjects | Automation Computation Computed tomography Image analysis Medical imaging Nodules Tomography |
title | An automated system for lung nodule detection in low-dose computed tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automated%20system%20for%20lung%20nodule%20detection%20in%20low-dose%20computed%20tomography&rft.jtitle=arXiv.org&rft.au=Gori,%20I&rft.date=2007-04-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0704.2728&rft_dat=%3Cproquest%3E2089893383%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-310e7d97e5e577d885ad107aa10ef5bf8dae66506a8ebe2ce407e052c3a1b3083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089893383&rft_id=info:pmid/&rfr_iscdi=true |