Loading…
Measurement of the Spin-Orbit Angle of Exoplanet HAT-P-1b
We present new spectroscopic and photometric observations of the HAT-P-1 planetary system. Spectra obtained during three transits exhibit the Rossiter-McLaughlin effect, allowing us to measure the angle between the sky projections of the stellar spin axis and orbit normal, \lambda = 3.7 +/- 2.1 degr...
Saved in:
Published in: | arXiv.org 2008-06 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present new spectroscopic and photometric observations of the HAT-P-1 planetary system. Spectra obtained during three transits exhibit the Rossiter-McLaughlin effect, allowing us to measure the angle between the sky projections of the stellar spin axis and orbit normal, \lambda = 3.7 +/- 2.1 degrees. The small value of \lambda for this and other systems suggests that the dominant planet migration mechanism preserves spin-orbit alignment. Using two new transit light curves, we refine the transit ephemeris and reduce the uncertainty in the orbital period by an order of magnitude. We find a upper limit on the orbital eccentricity of 0.067, with 99% confidence, by combining our new radial-velocity measurements with those obtained previously. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0806.1734 |