Loading…
Interaction of a CO molecule with a Pt monoatomic chain: the top geometry
Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the mai...
Saved in:
Published in: | arXiv.org 2008-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sclauzero, G A Dal Corso Smogunov, A Tosatti, E |
description | Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the main electronic molecule-chain interaction occurs via the \(5\sigma\) and \(2\pi^{\star}\) orbitals of the molecule, involved in a donation/back-donation process similar to that of CO on transition-metal surfaces. The ideal ballistic conductance of the monoatomic chain undergoes a moderate reduction by about 1.0 G_0 (from 4 G_0 to 3.1 G_0) upon adsorption of CO. By repeating all calculations with and without spin-orbit coupling, no substantial spin-orbit induced change emerges either in the chain-molecule interaction mechanism or in the conductance. |
doi_str_mv | 10.48550/arxiv.0809.0630 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090027429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090027429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519-2d2cdd707c03895bd67cadab0b2e9a5d266ca4b34ac16ccf7f191c86107d55bf3</originalsourceid><addsrcrecordid>eNotjztrwzAURkWh0JBm7yjobPdKsiSrWzF9GALpkD1cX8mNQ2ylttLHv68hnQ6c4Xx8jN0JyItSa3jA8af7yqEEl4NRcMUWUimRlYWUN2w1TQcAkMZKrdWC1fWQwoiUujjw2HLk1Yb38RjofAz8u0v7Wb2nWQ0RU-w74rTHbnjkaR94iif-EWIf0vh7y65bPE5h9c8l2748b6u3bL15raundYZauEx6Sd5bsASqdLrxxhJ6bKCRwaH20hjColEFkjBErW2FE1QaAdZr3bRqye4v2dMYP89hSrtDPI_DvLiT4OZntpBO_QHwj026</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090027429</pqid></control><display><type>article</type><title>Interaction of a CO molecule with a Pt monoatomic chain: the top geometry</title><source>Publicly Available Content Database</source><creator>Sclauzero, G ; A Dal Corso ; Smogunov, A ; Tosatti, E</creator><creatorcontrib>Sclauzero, G ; A Dal Corso ; Smogunov, A ; Tosatti, E</creatorcontrib><description>Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the main electronic molecule-chain interaction occurs via the \(5\sigma\) and \(2\pi^{\star}\) orbitals of the molecule, involved in a donation/back-donation process similar to that of CO on transition-metal surfaces. The ideal ballistic conductance of the monoatomic chain undergoes a moderate reduction by about 1.0 G_0 (from 4 G_0 to 3.1 G_0) upon adsorption of CO. By repeating all calculations with and without spin-orbit coupling, no substantial spin-orbit induced change emerges either in the chain-molecule interaction mechanism or in the conductance.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0809.0630</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adsorption ; Cobalt ; Electronic structure ; Mathematical analysis ; Metal surfaces ; Molecular chains ; Nanowires ; Platinum ; Resistance ; Spin-orbit interactions ; Transition metals</subject><ispartof>arXiv.org, 2008-09</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090027429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Sclauzero, G</creatorcontrib><creatorcontrib>A Dal Corso</creatorcontrib><creatorcontrib>Smogunov, A</creatorcontrib><creatorcontrib>Tosatti, E</creatorcontrib><title>Interaction of a CO molecule with a Pt monoatomic chain: the top geometry</title><title>arXiv.org</title><description>Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the main electronic molecule-chain interaction occurs via the \(5\sigma\) and \(2\pi^{\star}\) orbitals of the molecule, involved in a donation/back-donation process similar to that of CO on transition-metal surfaces. The ideal ballistic conductance of the monoatomic chain undergoes a moderate reduction by about 1.0 G_0 (from 4 G_0 to 3.1 G_0) upon adsorption of CO. By repeating all calculations with and without spin-orbit coupling, no substantial spin-orbit induced change emerges either in the chain-molecule interaction mechanism or in the conductance.</description><subject>Adsorption</subject><subject>Cobalt</subject><subject>Electronic structure</subject><subject>Mathematical analysis</subject><subject>Metal surfaces</subject><subject>Molecular chains</subject><subject>Nanowires</subject><subject>Platinum</subject><subject>Resistance</subject><subject>Spin-orbit interactions</subject><subject>Transition metals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjztrwzAURkWh0JBm7yjobPdKsiSrWzF9GALpkD1cX8mNQ2ylttLHv68hnQ6c4Xx8jN0JyItSa3jA8af7yqEEl4NRcMUWUimRlYWUN2w1TQcAkMZKrdWC1fWQwoiUujjw2HLk1Yb38RjofAz8u0v7Wb2nWQ0RU-w74rTHbnjkaR94iif-EWIf0vh7y65bPE5h9c8l2748b6u3bL15raundYZauEx6Sd5bsASqdLrxxhJ6bKCRwaH20hjColEFkjBErW2FE1QaAdZr3bRqye4v2dMYP89hSrtDPI_DvLiT4OZntpBO_QHwj026</recordid><startdate>20080903</startdate><enddate>20080903</enddate><creator>Sclauzero, G</creator><creator>A Dal Corso</creator><creator>Smogunov, A</creator><creator>Tosatti, E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080903</creationdate><title>Interaction of a CO molecule with a Pt monoatomic chain: the top geometry</title><author>Sclauzero, G ; A Dal Corso ; Smogunov, A ; Tosatti, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519-2d2cdd707c03895bd67cadab0b2e9a5d266ca4b34ac16ccf7f191c86107d55bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Cobalt</topic><topic>Electronic structure</topic><topic>Mathematical analysis</topic><topic>Metal surfaces</topic><topic>Molecular chains</topic><topic>Nanowires</topic><topic>Platinum</topic><topic>Resistance</topic><topic>Spin-orbit interactions</topic><topic>Transition metals</topic><toplevel>online_resources</toplevel><creatorcontrib>Sclauzero, G</creatorcontrib><creatorcontrib>A Dal Corso</creatorcontrib><creatorcontrib>Smogunov, A</creatorcontrib><creatorcontrib>Tosatti, E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sclauzero, G</au><au>A Dal Corso</au><au>Smogunov, A</au><au>Tosatti, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of a CO molecule with a Pt monoatomic chain: the top geometry</atitle><jtitle>arXiv.org</jtitle><date>2008-09-03</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>Recent experiments showed that the conductance of Pt nanocontacts and nanowires is measurably reduced by adsorption of CO. We present DFT calculations of the electronic structure and ballistic conductance of a Pt monoatomic chain and a CO molecule adsorbed in an on-top position. We find that the main electronic molecule-chain interaction occurs via the \(5\sigma\) and \(2\pi^{\star}\) orbitals of the molecule, involved in a donation/back-donation process similar to that of CO on transition-metal surfaces. The ideal ballistic conductance of the monoatomic chain undergoes a moderate reduction by about 1.0 G_0 (from 4 G_0 to 3.1 G_0) upon adsorption of CO. By repeating all calculations with and without spin-orbit coupling, no substantial spin-orbit induced change emerges either in the chain-molecule interaction mechanism or in the conductance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0809.0630</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2008-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2090027429 |
source | Publicly Available Content Database |
subjects | Adsorption Cobalt Electronic structure Mathematical analysis Metal surfaces Molecular chains Nanowires Platinum Resistance Spin-orbit interactions Transition metals |
title | Interaction of a CO molecule with a Pt monoatomic chain: the top geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20a%20CO%20molecule%20with%20a%20Pt%20monoatomic%20chain:%20the%20top%20geometry&rft.jtitle=arXiv.org&rft.au=Sclauzero,%20G&rft.date=2008-09-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0809.0630&rft_dat=%3Cproquest%3E2090027429%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a519-2d2cdd707c03895bd67cadab0b2e9a5d266ca4b34ac16ccf7f191c86107d55bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090027429&rft_id=info:pmid/&rfr_iscdi=true |