Loading…

Nilpotent Classical Mechanics

The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates \(\eta\). Necessary geometrical notions and elements of generalized differential \(\eta\)-calculus are introduced. The so called \(s-\)geometry, in...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2007-03
Main Author: Frydryszak, Andrzej M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Frydryszak, Andrzej M
description The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates \(\eta\). Necessary geometrical notions and elements of generalized differential \(\eta\)-calculus are introduced. The so called \(s-\)geometry, in a special case when it is orthogonally related to a traceless symmetric form, shows some resemblances to the symplectic geometry. As an example of an \(\eta\)-system the nilpotent oscillator is introduced and its supersymmetrization considered. It is shown that the \(R\)-symmetry known for the Graded Superfield Oscillator (GSO) is present also here for the supersymmetric \(\eta\)-system. The generalized Poisson bracket for \((\eta,p)\)-variables satisfies modified Leibniz rule and has nontrivial Jacobiator.
doi_str_mv 10.48550/arxiv.0609072
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090143813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090143813</sourcerecordid><originalsourceid>FETCH-proquest_journals_20901438133</originalsourceid><addsrcrecordid>eNpjYBAzNNAzsTA1NdBPLKrILNMzMDOwNDA3YmLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZkkPXLzCnIL0nNK1FwzkksLs5MTsxR8E1NzkjMy0wu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCOgZYYmxhaGxsbEqQIA92MxkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090143813</pqid></control><display><type>article</type><title>Nilpotent Classical Mechanics</title><source>Publicly Available Content Database</source><creator>Frydryszak, Andrzej M</creator><creatorcontrib>Frydryszak, Andrzej M</creatorcontrib><description>The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates \(\eta\). Necessary geometrical notions and elements of generalized differential \(\eta\)-calculus are introduced. The so called \(s-\)geometry, in a special case when it is orthogonally related to a traceless symmetric form, shows some resemblances to the symplectic geometry. As an example of an \(\eta\)-system the nilpotent oscillator is introduced and its supersymmetrization considered. It is shown that the \(R\)-symmetry known for the Graded Superfield Oscillator (GSO) is present also here for the supersymmetric \(\eta\)-system. The generalized Poisson bracket for \((\eta,p)\)-variables satisfies modified Leibniz rule and has nontrivial Jacobiator.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0609072</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calculus ; Classical mechanics ; Differential calculus ; Differential geometry ; Mechanics (physics) ; Supersymmetry ; Symmetry</subject><ispartof>arXiv.org, 2007-03</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/hep-th/0609072.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090143813?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Frydryszak, Andrzej M</creatorcontrib><title>Nilpotent Classical Mechanics</title><title>arXiv.org</title><description>The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates \(\eta\). Necessary geometrical notions and elements of generalized differential \(\eta\)-calculus are introduced. The so called \(s-\)geometry, in a special case when it is orthogonally related to a traceless symmetric form, shows some resemblances to the symplectic geometry. As an example of an \(\eta\)-system the nilpotent oscillator is introduced and its supersymmetrization considered. It is shown that the \(R\)-symmetry known for the Graded Superfield Oscillator (GSO) is present also here for the supersymmetric \(\eta\)-system. The generalized Poisson bracket for \((\eta,p)\)-variables satisfies modified Leibniz rule and has nontrivial Jacobiator.</description><subject>Calculus</subject><subject>Classical mechanics</subject><subject>Differential calculus</subject><subject>Differential geometry</subject><subject>Mechanics (physics)</subject><subject>Supersymmetry</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYBAzNNAzsTA1NdBPLKrILNMzMDOwNDA3YmLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZkkPXLzCnIL0nNK1FwzkksLs5MTsxR8E1NzkjMy0wu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCOgZYYmxhaGxsbEqQIA92MxkQ</recordid><startdate>20070328</startdate><enddate>20070328</enddate><creator>Frydryszak, Andrzej M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070328</creationdate><title>Nilpotent Classical Mechanics</title><author>Frydryszak, Andrzej M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20901438133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Calculus</topic><topic>Classical mechanics</topic><topic>Differential calculus</topic><topic>Differential geometry</topic><topic>Mechanics (physics)</topic><topic>Supersymmetry</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Frydryszak, Andrzej M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frydryszak, Andrzej M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nilpotent Classical Mechanics</atitle><jtitle>arXiv.org</jtitle><date>2007-03-28</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates \(\eta\). Necessary geometrical notions and elements of generalized differential \(\eta\)-calculus are introduced. The so called \(s-\)geometry, in a special case when it is orthogonally related to a traceless symmetric form, shows some resemblances to the symplectic geometry. As an example of an \(\eta\)-system the nilpotent oscillator is introduced and its supersymmetrization considered. It is shown that the \(R\)-symmetry known for the Graded Superfield Oscillator (GSO) is present also here for the supersymmetric \(\eta\)-system. The generalized Poisson bracket for \((\eta,p)\)-variables satisfies modified Leibniz rule and has nontrivial Jacobiator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0609072</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090143813
source Publicly Available Content Database
subjects Calculus
Classical mechanics
Differential calculus
Differential geometry
Mechanics (physics)
Supersymmetry
Symmetry
title Nilpotent Classical Mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nilpotent%20Classical%20Mechanics&rft.jtitle=arXiv.org&rft.au=Frydryszak,%20Andrzej%20M&rft.date=2007-03-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0609072&rft_dat=%3Cproquest%3E2090143813%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20901438133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090143813&rft_id=info:pmid/&rfr_iscdi=true