Loading…
Memory-Based Learning: Using Similarity for Smoothing
This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the...
Saved in:
Published in: | arXiv.org 1997-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zavrel, Jakub Daelemans, Walter |
description | This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090394503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090394503</sourcerecordid><originalsourceid>FETCH-proquest_journals_20903945033</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9U3NzS-q1HVKLE5NUfBJTSzKy8xLt1IILQZSCsGZuZk5iUWZJZUKaflFCsG5-fklGUAJHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwNDC2NDE1MDYmThUAcjM0uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090394503</pqid></control><display><type>article</type><title>Memory-Based Learning: Using Similarity for Smoothing</title><source>Publicly Available Content (ProQuest)</source><creator>Zavrel, Jakub ; Daelemans, Walter</creator><creatorcontrib>Zavrel, Jakub ; Daelemans, Walter</creatorcontrib><description>This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Information sources ; Similarity ; Smoothing ; Weighting methods</subject><ispartof>arXiv.org, 1997-05</ispartof><rights>1997. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090394503?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Zavrel, Jakub</creatorcontrib><creatorcontrib>Daelemans, Walter</creatorcontrib><title>Memory-Based Learning: Using Similarity for Smoothing</title><title>arXiv.org</title><description>This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.</description><subject>Information sources</subject><subject>Similarity</subject><subject>Smoothing</subject><subject>Weighting methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9U3NzS-q1HVKLE5NUfBJTSzKy8xLt1IILQZSCsGZuZk5iUWZJZUKaflFCsG5-fklGUAJHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwNDC2NDE1MDYmThUAcjM0uw</recordid><startdate>19970512</startdate><enddate>19970512</enddate><creator>Zavrel, Jakub</creator><creator>Daelemans, Walter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19970512</creationdate><title>Memory-Based Learning: Using Similarity for Smoothing</title><author>Zavrel, Jakub ; Daelemans, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20903945033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Information sources</topic><topic>Similarity</topic><topic>Smoothing</topic><topic>Weighting methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Zavrel, Jakub</creatorcontrib><creatorcontrib>Daelemans, Walter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavrel, Jakub</au><au>Daelemans, Walter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Memory-Based Learning: Using Similarity for Smoothing</atitle><jtitle>arXiv.org</jtitle><date>1997-05-12</date><risdate>1997</risdate><eissn>2331-8422</eissn><abstract>This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1997-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2090394503 |
source | Publicly Available Content (ProQuest) |
subjects | Information sources Similarity Smoothing Weighting methods |
title | Memory-Based Learning: Using Similarity for Smoothing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Memory-Based%20Learning:%20Using%20Similarity%20for%20Smoothing&rft.jtitle=arXiv.org&rft.au=Zavrel,%20Jakub&rft.date=1997-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090394503%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20903945033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090394503&rft_id=info:pmid/&rfr_iscdi=true |