Loading…
Electrical transport between epitaxial manganites and carbon nanotubes
The possibility of performing spintronics at the molecular level may be realized in devices that combine fully spin polarized oxides such as manganites with carbon nanotubes. However, it is not clear whether electrical transport between such different material systems is viable. Here we show that th...
Saved in:
Published in: | arXiv.org 2005-11 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The possibility of performing spintronics at the molecular level may be realized in devices that combine fully spin polarized oxides such as manganites with carbon nanotubes. However, it is not clear whether electrical transport between such different material systems is viable. Here we show that the room temperature conductance of manganite-nanotube-manganite devices is only half the value recorded in similar palladium-nanotube-palladium devices. Interestingly, the former shows a pseudogap in the conductivity below the relatively high temperature of 200 K. Our results suggest the possibility of new spintronics heterostructures that exploit fully spin polarized sources and drains. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0511259 |