Loading…
Interpretation of the in-plane infrared response of the high-Tc cuprate superconductors involving spin fluctuations revisited
The in-plane infrared response of the high-Tc cuprate superconductors was studied using the spin-fermion model, where charged quasiparticles of the copper-oxygen planes are coupled to spin fluctuations. First, we analyzed structures of the superconducting-state conductivity reflecting the coupling o...
Saved in:
Published in: | arXiv.org 2005-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The in-plane infrared response of the high-Tc cuprate superconductors was studied using the spin-fermion model, where charged quasiparticles of the copper-oxygen planes are coupled to spin fluctuations. First, we analyzed structures of the superconducting-state conductivity reflecting the coupling of the quasiparticles to the resonance mode observed by neutron scattering. The conductivity computed with the input spin susceptibility in the simple form of the mode exhibits two prominent features: an onset of the real part of the conductivity starting around the frequency of the mode omega_{0} and a maximum of a related function W(omega), roughly proportional to the second derivative of the scattering rate, centered approximately at omega=omega_{0}+Delta_{0}/hbar, where Delta_{0} is the maximum value of the superconducting gap. The two structures are well known from earlier studies. Their physical meaning, however, has not been sufficiently elucidated thus far. Our analysis involving quasiparticle spectral functions provides a clear interpretation. Second, we explored the role played by the spin-fluctuation continuum. Third, we investigated the temperature dependence of the conductivity, of the intraband spectral weight, and of the effective kinetic energy. The changes of the latter two quantities below Tc are determined by the formation of the gap, by a feedback effect of the spin fluctuations on the quasiparticles, and by a significant shift of the chemical potential. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0503666 |