Loading…
On the K-stability of complete intersections in polarized manifolds
We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the...
Saved in:
Published in: | arXiv.org 2008-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arezzo, Claudio Alberto Della Vedova |
description | We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians. |
doi_str_mv | 10.48550/arxiv.0810.1473 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090518793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090518793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003</originalsourceid><addsrcrecordid>eNotjTtrwzAUhUWh0JBm7yjI7FRvy2MxfZFAluzhWroiCo7lWkpp--traKdzvjN8h5AHzjbKas0eYfqKnxtm54GrWt6QhZCSV1YJcUdWOZ8ZY8LUQmu5IO1-oOWEdFvlAl3sY_mmKVCXLmOPBWkcCk4ZXYlpyDPRMfUwxR_09AJDDKn3-Z7cBugzrv5zSQ4vz4f2rdrtX9_bp10FmssqKLTGNA68VrV2nRFz5xzQce984EYF3mDwDBBV1wUbBGrs0MgGQDEml2T9px2n9HHFXI7ndJ2G-fEoWMM0t3Uj5S-9eU1x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090518793</pqid></control><display><type>article</type><title>On the K-stability of complete intersections in polarized manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>Arezzo, Claudio ; Alberto Della Vedova</creator><creatorcontrib>Arezzo, Claudio ; Alberto Della Vedova</creatorcontrib><description>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0810.1473</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Intersections ; Invariants ; Manifolds ; Stability</subject><ispartof>arXiv.org, 2008-10</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090518793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Arezzo, Claudio</creatorcontrib><creatorcontrib>Alberto Della Vedova</creatorcontrib><title>On the K-stability of complete intersections in polarized manifolds</title><title>arXiv.org</title><description>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</description><subject>Curvature</subject><subject>Intersections</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjTtrwzAUhUWh0JBm7yjI7FRvy2MxfZFAluzhWroiCo7lWkpp--traKdzvjN8h5AHzjbKas0eYfqKnxtm54GrWt6QhZCSV1YJcUdWOZ8ZY8LUQmu5IO1-oOWEdFvlAl3sY_mmKVCXLmOPBWkcCk4ZXYlpyDPRMfUwxR_09AJDDKn3-Z7cBugzrv5zSQ4vz4f2rdrtX9_bp10FmssqKLTGNA68VrV2nRFz5xzQce984EYF3mDwDBBV1wUbBGrs0MgGQDEml2T9px2n9HHFXI7ndJ2G-fEoWMM0t3Uj5S-9eU1x</recordid><startdate>20081008</startdate><enddate>20081008</enddate><creator>Arezzo, Claudio</creator><creator>Alberto Della Vedova</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081008</creationdate><title>On the K-stability of complete intersections in polarized manifolds</title><author>Arezzo, Claudio ; Alberto Della Vedova</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Curvature</topic><topic>Intersections</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Arezzo, Claudio</creatorcontrib><creatorcontrib>Alberto Della Vedova</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arezzo, Claudio</au><au>Alberto Della Vedova</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the K-stability of complete intersections in polarized manifolds</atitle><jtitle>arXiv.org</jtitle><date>2008-10-08</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0810.1473</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2008-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2090518793 |
source | Publicly Available Content (ProQuest) |
subjects | Curvature Intersections Invariants Manifolds Stability |
title | On the K-stability of complete intersections in polarized manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20K-stability%20of%20complete%20intersections%20in%20polarized%20manifolds&rft.jtitle=arXiv.org&rft.au=Arezzo,%20Claudio&rft.date=2008-10-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0810.1473&rft_dat=%3Cproquest%3E2090518793%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090518793&rft_id=info:pmid/&rfr_iscdi=true |