Loading…

On the K-stability of complete intersections in polarized manifolds

We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2008-10
Main Authors: Arezzo, Claudio, Alberto Della Vedova
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arezzo, Claudio
Alberto Della Vedova
description We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.
doi_str_mv 10.48550/arxiv.0810.1473
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090518793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090518793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003</originalsourceid><addsrcrecordid>eNotjTtrwzAUhUWh0JBm7yjI7FRvy2MxfZFAluzhWroiCo7lWkpp--traKdzvjN8h5AHzjbKas0eYfqKnxtm54GrWt6QhZCSV1YJcUdWOZ8ZY8LUQmu5IO1-oOWEdFvlAl3sY_mmKVCXLmOPBWkcCk4ZXYlpyDPRMfUwxR_09AJDDKn3-Z7cBugzrv5zSQ4vz4f2rdrtX9_bp10FmssqKLTGNA68VrV2nRFz5xzQce984EYF3mDwDBBV1wUbBGrs0MgGQDEml2T9px2n9HHFXI7ndJ2G-fEoWMM0t3Uj5S-9eU1x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090518793</pqid></control><display><type>article</type><title>On the K-stability of complete intersections in polarized manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>Arezzo, Claudio ; Alberto Della Vedova</creator><creatorcontrib>Arezzo, Claudio ; Alberto Della Vedova</creatorcontrib><description>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0810.1473</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Intersections ; Invariants ; Manifolds ; Stability</subject><ispartof>arXiv.org, 2008-10</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090518793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Arezzo, Claudio</creatorcontrib><creatorcontrib>Alberto Della Vedova</creatorcontrib><title>On the K-stability of complete intersections in polarized manifolds</title><title>arXiv.org</title><description>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</description><subject>Curvature</subject><subject>Intersections</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjTtrwzAUhUWh0JBm7yjI7FRvy2MxfZFAluzhWroiCo7lWkpp--traKdzvjN8h5AHzjbKas0eYfqKnxtm54GrWt6QhZCSV1YJcUdWOZ8ZY8LUQmu5IO1-oOWEdFvlAl3sY_mmKVCXLmOPBWkcCk4ZXYlpyDPRMfUwxR_09AJDDKn3-Z7cBugzrv5zSQ4vz4f2rdrtX9_bp10FmssqKLTGNA68VrV2nRFz5xzQce984EYF3mDwDBBV1wUbBGrs0MgGQDEml2T9px2n9HHFXI7ndJ2G-fEoWMM0t3Uj5S-9eU1x</recordid><startdate>20081008</startdate><enddate>20081008</enddate><creator>Arezzo, Claudio</creator><creator>Alberto Della Vedova</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081008</creationdate><title>On the K-stability of complete intersections in polarized manifolds</title><author>Arezzo, Claudio ; Alberto Della Vedova</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Curvature</topic><topic>Intersections</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Arezzo, Claudio</creatorcontrib><creatorcontrib>Alberto Della Vedova</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arezzo, Claudio</au><au>Alberto Della Vedova</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the K-stability of complete intersections in polarized manifolds</atitle><jtitle>arXiv.org</jtitle><date>2008-10-08</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of existence of constant scalar curvature Kaehler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai-Umemura-Tian like example of Fano 5-fold admitting no Kaehler-Einstein metric and a strong evidence of K-stability of complete intersections on Grassmannians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0810.1473</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090518793
source Publicly Available Content (ProQuest)
subjects Curvature
Intersections
Invariants
Manifolds
Stability
title On the K-stability of complete intersections in polarized manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20K-stability%20of%20complete%20intersections%20in%20polarized%20manifolds&rft.jtitle=arXiv.org&rft.au=Arezzo,%20Claudio&rft.date=2008-10-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0810.1473&rft_dat=%3Cproquest%3E2090518793%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-f4e8669cad5475cb629ca11aec1dcdf164f19efd0aee4bbf8f2e5ebe639aa4003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090518793&rft_id=info:pmid/&rfr_iscdi=true