Loading…

A Relaying Incentive Scheme in Multihop Cellular Networks Based on Coalitional Game with Externalities

Cooperative multihop communication can greatly increase network throughput, yet packet forwarding for other nodes involves opportunity and energy cost for relays. Thus one of the pre-requisite problems in the successful implementation of multihop transmission is how to foster cooperation among selfi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2008-12
Main Authors: Li, Cuilian, Yang, Zhen, Tian, Feng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cooperative multihop communication can greatly increase network throughput, yet packet forwarding for other nodes involves opportunity and energy cost for relays. Thus one of the pre-requisite problems in the successful implementation of multihop transmission is how to foster cooperation among selfish nodes. Existing researches mainly adopt monetary stimulating. In this manuscript, we propose instead a simple and self-enforcing forwarding incentive scheme free of indirect monetary remunerating for asymmetric (uplink multihop, downlink single-hop) cellar network based on coalitional game theory, which comprises double compensation, namely, Inter- BEA, global stimulating policy allotting resources among relaying coalitions according to group size, and Intra-BEA, local compensating and allocating rule within coalitions. Firstly, given the global allotting policy, we introduce a fair allocation estimating approach which includes remunerating for relaying cost using Myerson value for partition function game, to enlighten the design of local allocating rules. Secondly, given the inter- and intra-BEA relay fostering approach, we check stability of coalition structures in terms of internal and external stability as well as inductive core. Theoretic analysis and numerical simulation show that our measure can provide communication opportunities for outer ring nodes and enlarge system coverage, while at the same time provide enough motivation with respect to resource allocation and energy saving for nodes in inner and middle ring to relay for own profits.
ISSN:2331-8422