Loading…

Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube

We report on our theoretical study of the magnetoresistance in spin polarized transport through a finite carbon nanotube (CNT). Varying the Fermi energy of a CNT and the relative strength of couplings to two ferromagnetic (FM) electrodes, we studied the conductance as well as the magnetoresistance (...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2008-10
Main Authors: Tae-Suk, Kim, Lee, Choong-Ki, Hyun-Woo, Lee, Lee, B C, Rhie, K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tae-Suk, Kim
Lee, Choong-Ki
Hyun-Woo, Lee
Lee, B C
Rhie, K
description We report on our theoretical study of the magnetoresistance in spin polarized transport through a finite carbon nanotube (CNT). Varying the Fermi energy of a CNT and the relative strength of couplings to two ferromagnetic (FM) electrodes, we studied the conductance as well as the magnetoresistance (MR). Due to resonant transport through discrete energy levels in a finite CNT, the conductance and MR are oscillating as a function of the CNT Fermi energy. The MR is peaked at the conductance valleys and dipped close to the conductance peaks. When couplings to two FM electrodes are asymmetric, the MR dips become negative under a rather strong asymmetry. When couplings are more or less symmetric, the MR dips remain positive except for a very strong coupling case. Under strong coupling case, the line broadening is significant and transport channels through neighboring energy levels in a CNT interfere with each other, leading to the negative MR.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090677197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090677197</sourcerecordid><originalsourceid>FETCH-proquest_journals_20906771973</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC2liGzsXfxZF0L3camxTSm69SRafXgcfwOkM35mxRCqVZ9uNlAuWej8IIWSpZVGohB1O0DkTkIy3PoC7G24dv07WZRccgezbPPiNwPkJKfDQE8au58BroBYdP4PDEFuzYvMnjN6kvy7Zer-71cdsInxF40MzYCT3pUaKSpRa55VW_10fO5c8EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090677197</pqid></control><display><type>article</type><title>Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube</title><source>Publicly Available Content (ProQuest)</source><creator>Tae-Suk, Kim ; Lee, Choong-Ki ; Hyun-Woo, Lee ; Lee, B C ; Rhie, K</creator><creatorcontrib>Tae-Suk, Kim ; Lee, Choong-Ki ; Hyun-Woo, Lee ; Lee, B C ; Rhie, K</creatorcontrib><description>We report on our theoretical study of the magnetoresistance in spin polarized transport through a finite carbon nanotube (CNT). Varying the Fermi energy of a CNT and the relative strength of couplings to two ferromagnetic (FM) electrodes, we studied the conductance as well as the magnetoresistance (MR). Due to resonant transport through discrete energy levels in a finite CNT, the conductance and MR are oscillating as a function of the CNT Fermi energy. The MR is peaked at the conductance valleys and dipped close to the conductance peaks. When couplings to two FM electrodes are asymmetric, the MR dips become negative under a rather strong asymmetry. When couplings are more or less symmetric, the MR dips remain positive except for a very strong coupling case. Under strong coupling case, the line broadening is significant and transport channels through neighboring energy levels in a CNT interfere with each other, leading to the negative MR.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Carbon nanotubes ; Couplings ; Electrodes ; Energy levels ; Ferromagnetism ; Line broadening ; Magnetoresistance ; Magnetoresistivity ; Nanotubes ; Resistance</subject><ispartof>arXiv.org, 2008-10</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2090677197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Tae-Suk, Kim</creatorcontrib><creatorcontrib>Lee, Choong-Ki</creatorcontrib><creatorcontrib>Hyun-Woo, Lee</creatorcontrib><creatorcontrib>Lee, B C</creatorcontrib><creatorcontrib>Rhie, K</creatorcontrib><title>Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube</title><title>arXiv.org</title><description>We report on our theoretical study of the magnetoresistance in spin polarized transport through a finite carbon nanotube (CNT). Varying the Fermi energy of a CNT and the relative strength of couplings to two ferromagnetic (FM) electrodes, we studied the conductance as well as the magnetoresistance (MR). Due to resonant transport through discrete energy levels in a finite CNT, the conductance and MR are oscillating as a function of the CNT Fermi energy. The MR is peaked at the conductance valleys and dipped close to the conductance peaks. When couplings to two FM electrodes are asymmetric, the MR dips become negative under a rather strong asymmetry. When couplings are more or less symmetric, the MR dips remain positive except for a very strong coupling case. Under strong coupling case, the line broadening is significant and transport channels through neighboring energy levels in a CNT interfere with each other, leading to the negative MR.</description><subject>Carbon nanotubes</subject><subject>Couplings</subject><subject>Electrodes</subject><subject>Energy levels</subject><subject>Ferromagnetism</subject><subject>Line broadening</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Nanotubes</subject><subject>Resistance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC2liGzsXfxZF0L3camxTSm69SRafXgcfwOkM35mxRCqVZ9uNlAuWej8IIWSpZVGohB1O0DkTkIy3PoC7G24dv07WZRccgezbPPiNwPkJKfDQE8au58BroBYdP4PDEFuzYvMnjN6kvy7Zer-71cdsInxF40MzYCT3pUaKSpRa55VW_10fO5c8EA</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>Tae-Suk, Kim</creator><creator>Lee, Choong-Ki</creator><creator>Hyun-Woo, Lee</creator><creator>Lee, B C</creator><creator>Rhie, K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081031</creationdate><title>Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube</title><author>Tae-Suk, Kim ; Lee, Choong-Ki ; Hyun-Woo, Lee ; Lee, B C ; Rhie, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20906771973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon nanotubes</topic><topic>Couplings</topic><topic>Electrodes</topic><topic>Energy levels</topic><topic>Ferromagnetism</topic><topic>Line broadening</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Nanotubes</topic><topic>Resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Tae-Suk, Kim</creatorcontrib><creatorcontrib>Lee, Choong-Ki</creatorcontrib><creatorcontrib>Hyun-Woo, Lee</creatorcontrib><creatorcontrib>Lee, B C</creatorcontrib><creatorcontrib>Rhie, K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tae-Suk, Kim</au><au>Lee, Choong-Ki</au><au>Hyun-Woo, Lee</au><au>Lee, B C</au><au>Rhie, K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube</atitle><jtitle>arXiv.org</jtitle><date>2008-10-31</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We report on our theoretical study of the magnetoresistance in spin polarized transport through a finite carbon nanotube (CNT). Varying the Fermi energy of a CNT and the relative strength of couplings to two ferromagnetic (FM) electrodes, we studied the conductance as well as the magnetoresistance (MR). Due to resonant transport through discrete energy levels in a finite CNT, the conductance and MR are oscillating as a function of the CNT Fermi energy. The MR is peaked at the conductance valleys and dipped close to the conductance peaks. When couplings to two FM electrodes are asymmetric, the MR dips become negative under a rather strong asymmetry. When couplings are more or less symmetric, the MR dips remain positive except for a very strong coupling case. Under strong coupling case, the line broadening is significant and transport channels through neighboring energy levels in a CNT interfere with each other, leading to the negative MR.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090677197
source Publicly Available Content (ProQuest)
subjects Carbon nanotubes
Couplings
Electrodes
Energy levels
Ferromagnetism
Line broadening
Magnetoresistance
Magnetoresistivity
Nanotubes
Resistance
title Magnetoresistance in Spin-Polarized Transport through a Carbon Nanotube
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magnetoresistance%20in%20Spin-Polarized%20Transport%20through%20a%20Carbon%20Nanotube&rft.jtitle=arXiv.org&rft.au=Tae-Suk,%20Kim&rft.date=2008-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090677197%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20906771973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090677197&rft_id=info:pmid/&rfr_iscdi=true