Loading…
Effects of disorder with finite range on the properties of d-wave superconductors
It has long been established that disorder has profound effects on unconventional superconductors and it has been suggested repeatedly that observation and analysis of these disorder effects can help to identify the order parameter symmetry. In much of the relevant literature, including very sophist...
Saved in:
Published in: | arXiv.org 2004-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has long been established that disorder has profound effects on unconventional superconductors and it has been suggested repeatedly that observation and analysis of these disorder effects can help to identify the order parameter symmetry. In much of the relevant literature, including very sophisticated calculations of interference and weak localization effects, the disorder is represented by delta-function scatterers of arbitrary strength. One obvious shortcoming of this approximation is that resonant scattering resulting from the wavelength of the scattered quasiparticle matching the spatial extent of the defect is not included. We find that the mitigation of the Tc-reduction, expected when d-wave scattering is included, is very sensitive to the average strength of the scattering potential and is most effective for weak scatterers. Disorder with finite range not only has drastic effects on the predicted density of states at low energies, relevant for transport properties, but affects the spectral function at all energies up to the order parameter amplitude. The gap structure, which does not appear to be of the simplest d-wave form, should show a defect-dependent variation with temperature, which could be detected in ARPES experiments. |
---|---|
ISSN: | 2331-8422 |