Loading…

Population Sizing for Genetic Programming Based Upon Decision Making

This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2005-02
Main Authors: Sastry, K, U -M O'Reilly, Goldberg, D E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sastry, K
U -M O'Reilly
Goldberg, D E
description This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolution multiple times. The population-sizing relationship depends upon tree size, solution complexity, problem difficulty and building block expression probability. The relationship is used to analyze and empirically investigate population sizing for three model GP problems named ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and differ in whether their solutions require the use of a building block multiple times.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091224210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091224210</sourcerecordid><originalsourceid>FETCH-proquest_journals_20912242103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCcgvKM1JLMnMz1MIzqzKzEtXSMsvUnBPzUstyUxWCCjKTy9KzM0FiTslFqemKIQWAFW6pCZnFoO0-CZmA6V4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMDS0MjIxMjQwJg4VQAjqzol</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091224210</pqid></control><display><type>article</type><title>Population Sizing for Genetic Programming Based Upon Decision Making</title><source>Publicly Available Content Database</source><creator>Sastry, K ; U -M O'Reilly ; Goldberg, D E</creator><creatorcontrib>Sastry, K ; U -M O'Reilly ; Goldberg, D E</creatorcontrib><description>This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolution multiple times. The population-sizing relationship depends upon tree size, solution complexity, problem difficulty and building block expression probability. The relationship is used to analyze and empirically investigate population sizing for three model GP problems named ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and differ in whether their solutions require the use of a building block multiple times.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decision analysis ; Decision making ; Genetic algorithms ; Population ; Sizing</subject><ispartof>arXiv.org, 2005-02</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cs/0502020.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091224210?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sastry, K</creatorcontrib><creatorcontrib>U -M O'Reilly</creatorcontrib><creatorcontrib>Goldberg, D E</creatorcontrib><title>Population Sizing for Genetic Programming Based Upon Decision Making</title><title>arXiv.org</title><description>This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolution multiple times. The population-sizing relationship depends upon tree size, solution complexity, problem difficulty and building block expression probability. The relationship is used to analyze and empirically investigate population sizing for three model GP problems named ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and differ in whether their solutions require the use of a building block multiple times.</description><subject>Decision analysis</subject><subject>Decision making</subject><subject>Genetic algorithms</subject><subject>Population</subject><subject>Sizing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCcgvKM1JLMnMz1MIzqzKzEtXSMsvUnBPzUstyUxWCCjKTy9KzM0FiTslFqemKIQWAFW6pCZnFoO0-CZmA6V4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMDS0MjIxMjQwJg4VQAjqzol</recordid><startdate>20050204</startdate><enddate>20050204</enddate><creator>Sastry, K</creator><creator>U -M O'Reilly</creator><creator>Goldberg, D E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050204</creationdate><title>Population Sizing for Genetic Programming Based Upon Decision Making</title><author>Sastry, K ; U -M O'Reilly ; Goldberg, D E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20912242103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Decision analysis</topic><topic>Decision making</topic><topic>Genetic algorithms</topic><topic>Population</topic><topic>Sizing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sastry, K</creatorcontrib><creatorcontrib>U -M O'Reilly</creatorcontrib><creatorcontrib>Goldberg, D E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sastry, K</au><au>U -M O'Reilly</au><au>Goldberg, D E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Population Sizing for Genetic Programming Based Upon Decision Making</atitle><jtitle>arXiv.org</jtitle><date>2005-02-04</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolution multiple times. The population-sizing relationship depends upon tree size, solution complexity, problem difficulty and building block expression probability. The relationship is used to analyze and empirically investigate population sizing for three model GP problems named ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and differ in whether their solutions require the use of a building block multiple times.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091224210
source Publicly Available Content Database
subjects Decision analysis
Decision making
Genetic algorithms
Population
Sizing
title Population Sizing for Genetic Programming Based Upon Decision Making
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Population%20Sizing%20for%20Genetic%20Programming%20Based%20Upon%20Decision%20Making&rft.jtitle=arXiv.org&rft.au=Sastry,%20K&rft.date=2005-02-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091224210%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20912242103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091224210&rft_id=info:pmid/&rfr_iscdi=true