Loading…
Approximation Algorithms for the Bipartite Multi-cut Problem
We introduce the {\it Bipartite Multi-cut} problem. This is a generalization of the {\it st-Min-cut} problem, is similar to the {\it Multi-cut} problem (except for more stringent requirements) and also turns out to be an immediate generalization of the {\it Min UnCut} problem. We prove that this pro...
Saved in:
Published in: | arXiv.org 2006-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kenkre, Sreyash Vishwanathan, Sundar |
description | We introduce the {\it Bipartite Multi-cut} problem. This is a generalization of the {\it st-Min-cut} problem, is similar to the {\it Multi-cut} problem (except for more stringent requirements) and also turns out to be an immediate generalization of the {\it Min UnCut} problem. We prove that this problem is {\bf NP}-hard and then present LP and SDP based approximation algorithms. While the LP algorithm is based on the Garg-Vazirani-Yannakakis algorithm for {\it Multi-cut}, the SDP algorithm uses the {\it Structure Theorem} of \(\ell_2^2\) Metrics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091245978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091245978</sourcerecordid><originalsourceid>FETCH-proquest_journals_20912459783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcSwoKMqvyMxNLMnMz1NwzEnPL8osycgtVkjLL1IoyUhVcMosSCwqySxJVfAtzSnJ1E0uLVEIKMpPyknN5WFgTUvMKU7lhdLcDMpuriHOHrpAIwtLU4tL4rPyS4vygFLxRgaWhkYmppbmFsbEqQIAaiA35Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091245978</pqid></control><display><type>article</type><title>Approximation Algorithms for the Bipartite Multi-cut Problem</title><source>Publicly Available Content Database</source><creator>Kenkre, Sreyash ; Vishwanathan, Sundar</creator><creatorcontrib>Kenkre, Sreyash ; Vishwanathan, Sundar</creatorcontrib><description>We introduce the {\it Bipartite Multi-cut} problem. This is a generalization of the {\it st-Min-cut} problem, is similar to the {\it Multi-cut} problem (except for more stringent requirements) and also turns out to be an immediate generalization of the {\it Min UnCut} problem. We prove that this problem is {\bf NP}-hard and then present LP and SDP based approximation algorithms. While the LP algorithm is based on the Garg-Vazirani-Yannakakis algorithm for {\it Multi-cut}, the SDP algorithm uses the {\it Structure Theorem} of \(\ell_2^2\) Metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Mathematical analysis</subject><ispartof>arXiv.org, 2006-09</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cs/0609031.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091245978?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kenkre, Sreyash</creatorcontrib><creatorcontrib>Vishwanathan, Sundar</creatorcontrib><title>Approximation Algorithms for the Bipartite Multi-cut Problem</title><title>arXiv.org</title><description>We introduce the {\it Bipartite Multi-cut} problem. This is a generalization of the {\it st-Min-cut} problem, is similar to the {\it Multi-cut} problem (except for more stringent requirements) and also turns out to be an immediate generalization of the {\it Min UnCut} problem. We prove that this problem is {\bf NP}-hard and then present LP and SDP based approximation algorithms. While the LP algorithm is based on the Garg-Vazirani-Yannakakis algorithm for {\it Multi-cut}, the SDP algorithm uses the {\it Structure Theorem} of \(\ell_2^2\) Metrics.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcSwoKMqvyMxNLMnMz1NwzEnPL8osycgtVkjLL1IoyUhVcMosSCwqySxJVfAtzSnJ1E0uLVEIKMpPyknN5WFgTUvMKU7lhdLcDMpuriHOHrpAIwtLU4tL4rPyS4vygFLxRgaWhkYmppbmFsbEqQIAaiA35Q</recordid><startdate>20060926</startdate><enddate>20060926</enddate><creator>Kenkre, Sreyash</creator><creator>Vishwanathan, Sundar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060926</creationdate><title>Approximation Algorithms for the Bipartite Multi-cut Problem</title><author>Kenkre, Sreyash ; Vishwanathan, Sundar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20912459783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kenkre, Sreyash</creatorcontrib><creatorcontrib>Vishwanathan, Sundar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenkre, Sreyash</au><au>Vishwanathan, Sundar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximation Algorithms for the Bipartite Multi-cut Problem</atitle><jtitle>arXiv.org</jtitle><date>2006-09-26</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>We introduce the {\it Bipartite Multi-cut} problem. This is a generalization of the {\it st-Min-cut} problem, is similar to the {\it Multi-cut} problem (except for more stringent requirements) and also turns out to be an immediate generalization of the {\it Min UnCut} problem. We prove that this problem is {\bf NP}-hard and then present LP and SDP based approximation algorithms. While the LP algorithm is based on the Garg-Vazirani-Yannakakis algorithm for {\it Multi-cut}, the SDP algorithm uses the {\it Structure Theorem} of \(\ell_2^2\) Metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2006-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091245978 |
source | Publicly Available Content Database |
subjects | Algorithms Approximation Mathematical analysis |
title | Approximation Algorithms for the Bipartite Multi-cut Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximation%20Algorithms%20for%20the%20Bipartite%20Multi-cut%20Problem&rft.jtitle=arXiv.org&rft.au=Kenkre,%20Sreyash&rft.date=2006-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091245978%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20912459783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091245978&rft_id=info:pmid/&rfr_iscdi=true |