Loading…

Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties

As an alternative to the description of a toric variety by a fan in the lattice of one parameter subgroups, we present a new language in terms of what we call bunches -- these are certain collections of cones in the vector space of rational divisor classes. The correspondence between these bunches a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2003-08
Main Authors: Berchtold, Florian, Hausen, Juergen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Berchtold, Florian
Hausen, Juergen
description As an alternative to the description of a toric variety by a fan in the lattice of one parameter subgroups, we present a new language in terms of what we call bunches -- these are certain collections of cones in the vector space of rational divisor classes. The correspondence between these bunches and fans is based on classical Gale duality. The new combinatorial language allows a much more natural description of geometric phenomena around divisors of toric varieties than the usual method by fans does. For example, the numerically effective cone and the ample cone of a toric variety can be read off immediately from its bunch. Moreover, the language of bunches appears to be useful for classification problems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091248844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091248844</sourcerecordid><originalsourceid>FETCH-proquest_journals_20912488443</originalsourceid><addsrcrecordid>eNqNykEKwjAUBNAgCBbtHT64LsQ01bpUUTyA-xLjb5sSk5rf1OtbwQO4mmHmzVgi8nyTlVKIBUuJOs652O5EUeQJq47R6RYJfA3au6kYB0OL8DCjIR9AW0UETfCxhyyDAzh8T_J5N04NPhhlwSrXRNUg1JP_bhpGFQwOBmnF5rWyhOkvl2x9Od9O16wP_hWRhqrzMbjpqgTfb4QsSynz_9QHMpdD6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091248844</pqid></control><display><type>article</type><title>Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Berchtold, Florian ; Hausen, Juergen</creator><creatorcontrib>Berchtold, Florian ; Hausen, Juergen</creatorcontrib><description>As an alternative to the description of a toric variety by a fan in the lattice of one parameter subgroups, we present a new language in terms of what we call bunches -- these are certain collections of cones in the vector space of rational divisor classes. The correspondence between these bunches and fans is based on classical Gale duality. The new combinatorial language allows a much more natural description of geometric phenomena around divisors of toric varieties than the usual method by fans does. For example, the numerically effective cone and the ample cone of a toric variety can be read off immediately from its bunch. Moreover, the language of bunches appears to be useful for classification problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Cones ; Subgroups</subject><ispartof>arXiv.org, 2003-08</ispartof><rights>2003. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091248844?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><title>Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties</title><title>arXiv.org</title><description>As an alternative to the description of a toric variety by a fan in the lattice of one parameter subgroups, we present a new language in terms of what we call bunches -- these are certain collections of cones in the vector space of rational divisor classes. The correspondence between these bunches and fans is based on classical Gale duality. The new combinatorial language allows a much more natural description of geometric phenomena around divisors of toric varieties than the usual method by fans does. For example, the numerically effective cone and the ample cone of a toric variety can be read off immediately from its bunch. Moreover, the language of bunches appears to be useful for classification problems.</description><subject>Combinatorial analysis</subject><subject>Cones</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEKwjAUBNAgCBbtHT64LsQ01bpUUTyA-xLjb5sSk5rf1OtbwQO4mmHmzVgi8nyTlVKIBUuJOs652O5EUeQJq47R6RYJfA3au6kYB0OL8DCjIR9AW0UETfCxhyyDAzh8T_J5N04NPhhlwSrXRNUg1JP_bhpGFQwOBmnF5rWyhOkvl2x9Od9O16wP_hWRhqrzMbjpqgTfb4QsSynz_9QHMpdD6Q</recordid><startdate>20030827</startdate><enddate>20030827</enddate><creator>Berchtold, Florian</creator><creator>Hausen, Juergen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20030827</creationdate><title>Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties</title><author>Berchtold, Florian ; Hausen, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20912488443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Combinatorial analysis</topic><topic>Cones</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berchtold, Florian</au><au>Hausen, Juergen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties</atitle><jtitle>arXiv.org</jtitle><date>2003-08-27</date><risdate>2003</risdate><eissn>2331-8422</eissn><abstract>As an alternative to the description of a toric variety by a fan in the lattice of one parameter subgroups, we present a new language in terms of what we call bunches -- these are certain collections of cones in the vector space of rational divisor classes. The correspondence between these bunches and fans is based on classical Gale duality. The new combinatorial language allows a much more natural description of geometric phenomena around divisors of toric varieties than the usual method by fans does. For example, the numerically effective cone and the ample cone of a toric variety can be read off immediately from its bunch. Moreover, the language of bunches appears to be useful for classification problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2003-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091248844
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Combinatorial analysis
Cones
Subgroups
title Bunches of cones in the divisor class group -- A new combinatorial language for toric varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bunches%20of%20cones%20in%20the%20divisor%20class%20group%20--%20A%20new%20combinatorial%20language%20for%20toric%20varieties&rft.jtitle=arXiv.org&rft.au=Berchtold,%20Florian&rft.date=2003-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091248844%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20912488443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091248844&rft_id=info:pmid/&rfr_iscdi=true