Loading…

Cox rings and combinatorics

For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2004-12
Main Authors: Berchtold, Florian, Hausen, Juergen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Berchtold, Florian
Hausen, Juergen
description For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091424295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091424295</sourcerecordid><originalsourceid>FETCH-proquest_journals_20914242953</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQds6vUCjKzEsvVkjMS1FIzs9NysxLLMkvykwu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDS0MTIxMjS1Nj4lQBAPRfKzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091424295</pqid></control><display><type>article</type><title>Cox rings and combinatorics</title><source>Publicly Available Content Database</source><creator>Berchtold, Florian ; Hausen, Juergen</creator><creatorcontrib>Berchtold, Florian ; Hausen, Juergen</creatorcontrib><description>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Singularities</subject><ispartof>arXiv.org, 2004-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0311105.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091424295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><title>Cox rings and combinatorics</title><title>arXiv.org</title><description>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</description><subject>Combinatorial analysis</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQds6vUCjKzEsvVkjMS1FIzs9NysxLLMkvykwu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDS0MTIxMjS1Nj4lQBAPRfKzk</recordid><startdate>20041210</startdate><enddate>20041210</enddate><creator>Berchtold, Florian</creator><creator>Hausen, Juergen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20041210</creationdate><title>Cox rings and combinatorics</title><author>Berchtold, Florian ; Hausen, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20914242953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Combinatorial analysis</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berchtold, Florian</au><au>Hausen, Juergen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cox rings and combinatorics</atitle><jtitle>arXiv.org</jtitle><date>2004-12-10</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2004-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091424295
source Publicly Available Content Database
subjects Combinatorial analysis
Singularities
title Cox rings and combinatorics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cox%20rings%20and%20combinatorics&rft.jtitle=arXiv.org&rft.au=Berchtold,%20Florian&rft.date=2004-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091424295%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20914242953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091424295&rft_id=info:pmid/&rfr_iscdi=true