Loading…
Cox rings and combinatorics
For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show...
Saved in:
Published in: | arXiv.org 2004-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Berchtold, Florian Hausen, Juergen |
description | For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091424295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091424295</sourcerecordid><originalsourceid>FETCH-proquest_journals_20914242953</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQds6vUCjKzEsvVkjMS1FIzs9NysxLLMkvykwu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDS0MTIxMjS1Nj4lQBAPRfKzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091424295</pqid></control><display><type>article</type><title>Cox rings and combinatorics</title><source>Publicly Available Content Database</source><creator>Berchtold, Florian ; Hausen, Juergen</creator><creatorcontrib>Berchtold, Florian ; Hausen, Juergen</creatorcontrib><description>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Singularities</subject><ispartof>arXiv.org, 2004-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0311105.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091424295?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><title>Cox rings and combinatorics</title><title>arXiv.org</title><description>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</description><subject>Combinatorial analysis</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQds6vUCjKzEsvVkjMS1FIzs9NysxLLMkvykwu5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDS0MTIxMjS1Nj4lQBAPRfKzk</recordid><startdate>20041210</startdate><enddate>20041210</enddate><creator>Berchtold, Florian</creator><creator>Hausen, Juergen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20041210</creationdate><title>Cox rings and combinatorics</title><author>Berchtold, Florian ; Hausen, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20914242953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Combinatorial analysis</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Berchtold, Florian</creatorcontrib><creatorcontrib>Hausen, Juergen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berchtold, Florian</au><au>Hausen, Juergen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cox rings and combinatorics</atitle><jtitle>arXiv.org</jtitle><date>2004-12-10</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>For a variety with a finitely generated total coordinate ring, we describe basic geometric properties in terms of certain combinatorial structures living in its divisor class group. For example, we describe the singularities, we calculate the ample cone, and we give simple Fano criteria. As we show by means of several examples, these results allow explicit computations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2004-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091424295 |
source | Publicly Available Content Database |
subjects | Combinatorial analysis Singularities |
title | Cox rings and combinatorics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cox%20rings%20and%20combinatorics&rft.jtitle=arXiv.org&rft.au=Berchtold,%20Florian&rft.date=2004-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091424295%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20914242953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091424295&rft_id=info:pmid/&rfr_iscdi=true |