Loading…

Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality

The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Par...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2018-07, Vol.54 (7), p.4901-4915
Main Authors: Tai, Xiaonan, Mackay, D. Scott, Sperry, John S., Brooks, Paul, Anderegg, William R. L., Flanagan, Lawrence B., Rood, Stewart B., Hopkinson, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353
cites cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353
container_end_page 4915
container_issue 7
container_start_page 4901
container_title Water resources research
container_volume 54
creator Tai, Xiaonan
Mackay, D. Scott
Sperry, John S.
Brooks, Paul
Anderegg, William R. L.
Flanagan, Lawrence B.
Rood, Stewart B.
Hopkinson, Christopher
description The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals. Key Points Plant hydraulics and hydrology are integrated Role of alternate water sources in sustaining cottonwoods is assessed Susceptibility to different streamflows is predicted
doi_str_mv 10.1029/2018WR022801
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2091474005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091474005</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</originalsourceid><addsrcrecordid>eNp90MFqGzEQBmARGoib5JYHEPTaTUcr7Up7LE7TBGwSnAQfF1matWXUlStpKb7lEfKMfZJ66x56ymmY4ZsZ-Am5YnDNoGy-lMDUcgFlqYCdkAlrhChkI_kHMgEQvGC8kWfkY0pbACaqWk7I241LObrVkNHSR6_7TO_2NurBO0N1b_92wYe1M9rTebDoXb-mOdCX3mJMeTR5g_RpSAZ32a2cd3lPQ0cXbqej0z1dhmD96J4jYhp3b2IY1pv8-_XtvreDObyeh5j1uHlBTjvtE17-q-fk5fbb8_SumD18v59-nRWa10oUHQdhoOpqDojcshoabVUpLYfDzHQoV1aZSgkElFhWygjbKGEl71aK8Yqfk0_Hu7sYfg6YcrsNQ-wPL9sSGiakABjV56MyMaQUsWt30f3Qcd8yaMfM2_8zP3B-5L-cx_27tl0upouSi1rwP_qAhlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091474005</pqid></control><display><type>article</type><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</creator><creatorcontrib>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</creatorcontrib><description>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals. Key Points Plant hydraulics and hydrology are integrated Role of alternate water sources in sustaining cottonwoods is assessed Susceptibility to different streamflows is predicted</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR022801</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Atmospheric models ; Cavitation ; Climate change ; Computational fluid dynamics ; Computer simulation ; Drought ; Dynamics ; Ecosystems ; Evapotranspiration ; Floodplains ; Fluid flow ; Forests ; Frameworks ; Groundwater ; Groundwater flow ; groundwater hydrology ; Hybrids ; Hydraulic properties ; Hydraulics ; Hydrologic models ; Hydrology ; integrated modeling ; Interactions ; Modelling ; Mortality ; Mortality risk ; Parallel flow ; Physiological responses ; plant hydraulics ; Precipitation ; riparian forest ; Riparian forests ; River water ; Rivers ; Simulators ; Soil ; Soil dynamics ; Soil moisture ; Stream discharge ; Stream flow ; Vulnerability ; Water availability ; Woodlands ; Xylem</subject><ispartof>Water resources research, 2018-07, Vol.54 (7), p.4901-4915</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</citedby><cites>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</cites><orcidid>0000-0003-0477-9755 ; 0000-0002-3998-4778 ; 0000-0002-3040-3121 ; 0000-0003-1748-0306 ; 0000-0001-9201-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR022801$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR022801$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Tai, Xiaonan</creatorcontrib><creatorcontrib>Mackay, D. Scott</creatorcontrib><creatorcontrib>Sperry, John S.</creatorcontrib><creatorcontrib>Brooks, Paul</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Rood, Stewart B.</creatorcontrib><creatorcontrib>Hopkinson, Christopher</creatorcontrib><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><title>Water resources research</title><description>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals. Key Points Plant hydraulics and hydrology are integrated Role of alternate water sources in sustaining cottonwoods is assessed Susceptibility to different streamflows is predicted</description><subject>Atmospheric models</subject><subject>Cavitation</subject><subject>Climate change</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drought</subject><subject>Dynamics</subject><subject>Ecosystems</subject><subject>Evapotranspiration</subject><subject>Floodplains</subject><subject>Fluid flow</subject><subject>Forests</subject><subject>Frameworks</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>groundwater hydrology</subject><subject>Hybrids</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>integrated modeling</subject><subject>Interactions</subject><subject>Modelling</subject><subject>Mortality</subject><subject>Mortality risk</subject><subject>Parallel flow</subject><subject>Physiological responses</subject><subject>plant hydraulics</subject><subject>Precipitation</subject><subject>riparian forest</subject><subject>Riparian forests</subject><subject>River water</subject><subject>Rivers</subject><subject>Simulators</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Vulnerability</subject><subject>Water availability</subject><subject>Woodlands</subject><subject>Xylem</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MFqGzEQBmARGoib5JYHEPTaTUcr7Up7LE7TBGwSnAQfF1matWXUlStpKb7lEfKMfZJ66x56ymmY4ZsZ-Am5YnDNoGy-lMDUcgFlqYCdkAlrhChkI_kHMgEQvGC8kWfkY0pbACaqWk7I241LObrVkNHSR6_7TO_2NurBO0N1b_92wYe1M9rTebDoXb-mOdCX3mJMeTR5g_RpSAZ32a2cd3lPQ0cXbqej0z1dhmD96J4jYhp3b2IY1pv8-_XtvreDObyeh5j1uHlBTjvtE17-q-fk5fbb8_SumD18v59-nRWa10oUHQdhoOpqDojcshoabVUpLYfDzHQoV1aZSgkElFhWygjbKGEl71aK8Yqfk0_Hu7sYfg6YcrsNQ-wPL9sSGiakABjV56MyMaQUsWt30f3Qcd8yaMfM2_8zP3B-5L-cx_27tl0upouSi1rwP_qAhlY</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Tai, Xiaonan</creator><creator>Mackay, D. Scott</creator><creator>Sperry, John S.</creator><creator>Brooks, Paul</creator><creator>Anderegg, William R. L.</creator><creator>Flanagan, Lawrence B.</creator><creator>Rood, Stewart B.</creator><creator>Hopkinson, Christopher</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0477-9755</orcidid><orcidid>https://orcid.org/0000-0002-3998-4778</orcidid><orcidid>https://orcid.org/0000-0002-3040-3121</orcidid><orcidid>https://orcid.org/0000-0003-1748-0306</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid></search><sort><creationdate>201807</creationdate><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><author>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>Cavitation</topic><topic>Climate change</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drought</topic><topic>Dynamics</topic><topic>Ecosystems</topic><topic>Evapotranspiration</topic><topic>Floodplains</topic><topic>Fluid flow</topic><topic>Forests</topic><topic>Frameworks</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>groundwater hydrology</topic><topic>Hybrids</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>integrated modeling</topic><topic>Interactions</topic><topic>Modelling</topic><topic>Mortality</topic><topic>Mortality risk</topic><topic>Parallel flow</topic><topic>Physiological responses</topic><topic>plant hydraulics</topic><topic>Precipitation</topic><topic>riparian forest</topic><topic>Riparian forests</topic><topic>River water</topic><topic>Rivers</topic><topic>Simulators</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Vulnerability</topic><topic>Water availability</topic><topic>Woodlands</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Xiaonan</creatorcontrib><creatorcontrib>Mackay, D. Scott</creatorcontrib><creatorcontrib>Sperry, John S.</creatorcontrib><creatorcontrib>Brooks, Paul</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Rood, Stewart B.</creatorcontrib><creatorcontrib>Hopkinson, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Xiaonan</au><au>Mackay, D. Scott</au><au>Sperry, John S.</au><au>Brooks, Paul</au><au>Anderegg, William R. L.</au><au>Flanagan, Lawrence B.</au><au>Rood, Stewart B.</au><au>Hopkinson, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</atitle><jtitle>Water resources research</jtitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>7</issue><spage>4901</spage><epage>4915</epage><pages>4901-4915</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals. Key Points Plant hydraulics and hydrology are integrated Role of alternate water sources in sustaining cottonwoods is assessed Susceptibility to different streamflows is predicted</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018WR022801</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0477-9755</orcidid><orcidid>https://orcid.org/0000-0002-3998-4778</orcidid><orcidid>https://orcid.org/0000-0002-3040-3121</orcidid><orcidid>https://orcid.org/0000-0003-1748-0306</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-07, Vol.54 (7), p.4901-4915
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2091474005
source Wiley-Blackwell AGU Digital Library
subjects Atmospheric models
Cavitation
Climate change
Computational fluid dynamics
Computer simulation
Drought
Dynamics
Ecosystems
Evapotranspiration
Floodplains
Fluid flow
Forests
Frameworks
Groundwater
Groundwater flow
groundwater hydrology
Hybrids
Hydraulic properties
Hydraulics
Hydrologic models
Hydrology
integrated modeling
Interactions
Modelling
Mortality
Mortality risk
Parallel flow
Physiological responses
plant hydraulics
Precipitation
riparian forest
Riparian forests
River water
Rivers
Simulators
Soil
Soil dynamics
Soil moisture
Stream discharge
Stream flow
Vulnerability
Water availability
Woodlands
Xylem
title Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Plant%20Hydraulic%20and%20Hydrological%20Modeling%20to%20Understand%20the%20Susceptibility%20of%20Riparian%20Woodland%20Trees%20to%20Drought%E2%80%90Induced%20Mortality&rft.jtitle=Water%20resources%20research&rft.au=Tai,%20Xiaonan&rft.date=2018-07&rft.volume=54&rft.issue=7&rft.spage=4901&rft.epage=4915&rft.pages=4901-4915&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR022801&rft_dat=%3Cproquest_cross%3E2091474005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091474005&rft_id=info:pmid/&rfr_iscdi=true