Loading…
Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality
The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Par...
Saved in:
Published in: | Water resources research 2018-07, Vol.54 (7), p.4901-4915 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353 |
---|---|
cites | cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353 |
container_end_page | 4915 |
container_issue | 7 |
container_start_page | 4901 |
container_title | Water resources research |
container_volume | 54 |
creator | Tai, Xiaonan Mackay, D. Scott Sperry, John S. Brooks, Paul Anderegg, William R. L. Flanagan, Lawrence B. Rood, Stewart B. Hopkinson, Christopher |
description | The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals.
Key Points
Plant hydraulics and hydrology are integrated
Role of alternate water sources in sustaining cottonwoods is assessed
Susceptibility to different streamflows is predicted |
doi_str_mv | 10.1029/2018WR022801 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2091474005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091474005</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</originalsourceid><addsrcrecordid>eNp90MFqGzEQBmARGoib5JYHEPTaTUcr7Up7LE7TBGwSnAQfF1matWXUlStpKb7lEfKMfZJ66x56ymmY4ZsZ-Am5YnDNoGy-lMDUcgFlqYCdkAlrhChkI_kHMgEQvGC8kWfkY0pbACaqWk7I241LObrVkNHSR6_7TO_2NurBO0N1b_92wYe1M9rTebDoXb-mOdCX3mJMeTR5g_RpSAZ32a2cd3lPQ0cXbqej0z1dhmD96J4jYhp3b2IY1pv8-_XtvreDObyeh5j1uHlBTjvtE17-q-fk5fbb8_SumD18v59-nRWa10oUHQdhoOpqDojcshoabVUpLYfDzHQoV1aZSgkElFhWygjbKGEl71aK8Yqfk0_Hu7sYfg6YcrsNQ-wPL9sSGiakABjV56MyMaQUsWt30f3Qcd8yaMfM2_8zP3B-5L-cx_27tl0upouSi1rwP_qAhlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091474005</pqid></control><display><type>article</type><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</creator><creatorcontrib>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</creatorcontrib><description>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals.
Key Points
Plant hydraulics and hydrology are integrated
Role of alternate water sources in sustaining cottonwoods is assessed
Susceptibility to different streamflows is predicted</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR022801</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Atmospheric models ; Cavitation ; Climate change ; Computational fluid dynamics ; Computer simulation ; Drought ; Dynamics ; Ecosystems ; Evapotranspiration ; Floodplains ; Fluid flow ; Forests ; Frameworks ; Groundwater ; Groundwater flow ; groundwater hydrology ; Hybrids ; Hydraulic properties ; Hydraulics ; Hydrologic models ; Hydrology ; integrated modeling ; Interactions ; Modelling ; Mortality ; Mortality risk ; Parallel flow ; Physiological responses ; plant hydraulics ; Precipitation ; riparian forest ; Riparian forests ; River water ; Rivers ; Simulators ; Soil ; Soil dynamics ; Soil moisture ; Stream discharge ; Stream flow ; Vulnerability ; Water availability ; Woodlands ; Xylem</subject><ispartof>Water resources research, 2018-07, Vol.54 (7), p.4901-4915</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</citedby><cites>FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</cites><orcidid>0000-0003-0477-9755 ; 0000-0002-3998-4778 ; 0000-0002-3040-3121 ; 0000-0003-1748-0306 ; 0000-0001-9201-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR022801$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR022801$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Tai, Xiaonan</creatorcontrib><creatorcontrib>Mackay, D. Scott</creatorcontrib><creatorcontrib>Sperry, John S.</creatorcontrib><creatorcontrib>Brooks, Paul</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Rood, Stewart B.</creatorcontrib><creatorcontrib>Hopkinson, Christopher</creatorcontrib><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><title>Water resources research</title><description>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals.
Key Points
Plant hydraulics and hydrology are integrated
Role of alternate water sources in sustaining cottonwoods is assessed
Susceptibility to different streamflows is predicted</description><subject>Atmospheric models</subject><subject>Cavitation</subject><subject>Climate change</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drought</subject><subject>Dynamics</subject><subject>Ecosystems</subject><subject>Evapotranspiration</subject><subject>Floodplains</subject><subject>Fluid flow</subject><subject>Forests</subject><subject>Frameworks</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>groundwater hydrology</subject><subject>Hybrids</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>integrated modeling</subject><subject>Interactions</subject><subject>Modelling</subject><subject>Mortality</subject><subject>Mortality risk</subject><subject>Parallel flow</subject><subject>Physiological responses</subject><subject>plant hydraulics</subject><subject>Precipitation</subject><subject>riparian forest</subject><subject>Riparian forests</subject><subject>River water</subject><subject>Rivers</subject><subject>Simulators</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Vulnerability</subject><subject>Water availability</subject><subject>Woodlands</subject><subject>Xylem</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MFqGzEQBmARGoib5JYHEPTaTUcr7Up7LE7TBGwSnAQfF1matWXUlStpKb7lEfKMfZJ66x56ymmY4ZsZ-Am5YnDNoGy-lMDUcgFlqYCdkAlrhChkI_kHMgEQvGC8kWfkY0pbACaqWk7I241LObrVkNHSR6_7TO_2NurBO0N1b_92wYe1M9rTebDoXb-mOdCX3mJMeTR5g_RpSAZ32a2cd3lPQ0cXbqej0z1dhmD96J4jYhp3b2IY1pv8-_XtvreDObyeh5j1uHlBTjvtE17-q-fk5fbb8_SumD18v59-nRWa10oUHQdhoOpqDojcshoabVUpLYfDzHQoV1aZSgkElFhWygjbKGEl71aK8Yqfk0_Hu7sYfg6YcrsNQ-wPL9sSGiakABjV56MyMaQUsWt30f3Qcd8yaMfM2_8zP3B-5L-cx_27tl0upouSi1rwP_qAhlY</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Tai, Xiaonan</creator><creator>Mackay, D. Scott</creator><creator>Sperry, John S.</creator><creator>Brooks, Paul</creator><creator>Anderegg, William R. L.</creator><creator>Flanagan, Lawrence B.</creator><creator>Rood, Stewart B.</creator><creator>Hopkinson, Christopher</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0477-9755</orcidid><orcidid>https://orcid.org/0000-0002-3998-4778</orcidid><orcidid>https://orcid.org/0000-0002-3040-3121</orcidid><orcidid>https://orcid.org/0000-0003-1748-0306</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid></search><sort><creationdate>201807</creationdate><title>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</title><author>Tai, Xiaonan ; Mackay, D. Scott ; Sperry, John S. ; Brooks, Paul ; Anderegg, William R. L. ; Flanagan, Lawrence B. ; Rood, Stewart B. ; Hopkinson, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>Cavitation</topic><topic>Climate change</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drought</topic><topic>Dynamics</topic><topic>Ecosystems</topic><topic>Evapotranspiration</topic><topic>Floodplains</topic><topic>Fluid flow</topic><topic>Forests</topic><topic>Frameworks</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>groundwater hydrology</topic><topic>Hybrids</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>integrated modeling</topic><topic>Interactions</topic><topic>Modelling</topic><topic>Mortality</topic><topic>Mortality risk</topic><topic>Parallel flow</topic><topic>Physiological responses</topic><topic>plant hydraulics</topic><topic>Precipitation</topic><topic>riparian forest</topic><topic>Riparian forests</topic><topic>River water</topic><topic>Rivers</topic><topic>Simulators</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Vulnerability</topic><topic>Water availability</topic><topic>Woodlands</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Xiaonan</creatorcontrib><creatorcontrib>Mackay, D. Scott</creatorcontrib><creatorcontrib>Sperry, John S.</creatorcontrib><creatorcontrib>Brooks, Paul</creatorcontrib><creatorcontrib>Anderegg, William R. L.</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Rood, Stewart B.</creatorcontrib><creatorcontrib>Hopkinson, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Xiaonan</au><au>Mackay, D. Scott</au><au>Sperry, John S.</au><au>Brooks, Paul</au><au>Anderegg, William R. L.</au><au>Flanagan, Lawrence B.</au><au>Rood, Stewart B.</au><au>Hopkinson, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality</atitle><jtitle>Water resources research</jtitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>7</issue><spage>4901</spage><epage>4915</epage><pages>4901-4915</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The mechanistic understanding of drought‐induced forest mortality hinges on improved models that incorporate the interactions between plant physiological responses and the spatiotemporal dynamics of water availability. We present a new framework integrating a three‐dimensional groundwater model, Parallel Flow, with a physiologically sophisticated plant model, Terrestrial Regional Ecosystem Exchange Simulator. The integrated model, Parallel Flow‐Terrestrial Regional Ecosystem Exchange Simulator, was demonstrated to quantify the susceptibility of riparian cottonwoods (Populus angustifolia, Populus deltoides, and native hybrids) in southwestern Canada to sustained atmospheric drought and variability in stream flow. The model reasonably captured the dynamics of soil moisture and evapotranspiration in both wet and dry years, including the resilience of cottonwoods despite their high vulnerability to xylem cavitation. Unrealistic predictions of mortality could be generated when ignoring lateral groundwater flow. Our results also illustrated a mechanistic linkage between streamflow and cottonwood health. In the absence of precipitation, normal streamflow could sustain 94% of cottonwoods, and higher streamflows would be required to sustain all of the floodplain cottonwoods. Further, the risk of mortality was mediated by plant hydraulic properties. These results underpin the importance of integrating groundwater processes and plant hydraulics in order to analyze the forest response to sustained severe drought, which could increase in the future due to climate change combined with increasing river water withdrawals.
Key Points
Plant hydraulics and hydrology are integrated
Role of alternate water sources in sustaining cottonwoods is assessed
Susceptibility to different streamflows is predicted</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018WR022801</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0477-9755</orcidid><orcidid>https://orcid.org/0000-0002-3998-4778</orcidid><orcidid>https://orcid.org/0000-0002-3040-3121</orcidid><orcidid>https://orcid.org/0000-0003-1748-0306</orcidid><orcidid>https://orcid.org/0000-0001-9201-1062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2018-07, Vol.54 (7), p.4901-4915 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2091474005 |
source | Wiley-Blackwell AGU Digital Library |
subjects | Atmospheric models Cavitation Climate change Computational fluid dynamics Computer simulation Drought Dynamics Ecosystems Evapotranspiration Floodplains Fluid flow Forests Frameworks Groundwater Groundwater flow groundwater hydrology Hybrids Hydraulic properties Hydraulics Hydrologic models Hydrology integrated modeling Interactions Modelling Mortality Mortality risk Parallel flow Physiological responses plant hydraulics Precipitation riparian forest Riparian forests River water Rivers Simulators Soil Soil dynamics Soil moisture Stream discharge Stream flow Vulnerability Water availability Woodlands Xylem |
title | Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Drought‐Induced Mortality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Plant%20Hydraulic%20and%20Hydrological%20Modeling%20to%20Understand%20the%20Susceptibility%20of%20Riparian%20Woodland%20Trees%20to%20Drought%E2%80%90Induced%20Mortality&rft.jtitle=Water%20resources%20research&rft.au=Tai,%20Xiaonan&rft.date=2018-07&rft.volume=54&rft.issue=7&rft.spage=4901&rft.epage=4915&rft.pages=4901-4915&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR022801&rft_dat=%3Cproquest_cross%3E2091474005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3684-f304c05f630ee3d1609ad827d30f63cfe7bd8c584e0e7e258c4d984d73fb81353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091474005&rft_id=info:pmid/&rfr_iscdi=true |