Loading…

Newton-Hensel Interpolation Lifting

The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in \(Z[x]\) from information modulo a prime number \(p\ne 2\) to a power \(p^k\) for any \(k\), and its originality is that it is a mixed version that no...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2005-09
Main Authors: Avendaño, Martin, Krick, Teresa, Pacetti, Ariel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Avendaño, Martin
Krick, Teresa
Pacetti, Ariel
description The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in \(Z[x]\) from information modulo a prime number \(p\ne 2\) to a power \(p^k\) for any \(k\), and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton-Hensel lifting of a system of \(2t\) generalized equations in \(2t\) unknowns in the ring of \(p\)-adic integers \(\Z_p\). Finally we apply our results to sparse polynomial interpolation in \(\Z[x]\)
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091645334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091645334</sourcerecordid><originalsourceid>FETCH-proquest_journals_20916453343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9kstL8nP0_VIzStOzVHwzCtJLSrIz0ksyczPU_DJTCvJzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNLQzMTU2NjE2PiVAEArcQubg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091645334</pqid></control><display><type>article</type><title>Newton-Hensel Interpolation Lifting</title><source>Publicly Available Content (ProQuest)</source><creator>Avendaño, Martin ; Krick, Teresa ; Pacetti, Ariel</creator><creatorcontrib>Avendaño, Martin ; Krick, Teresa ; Pacetti, Ariel</creatorcontrib><description>The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in \(Z[x]\) from information modulo a prime number \(p\ne 2\) to a power \(p^k\) for any \(k\), and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton-Hensel lifting of a system of \(2t\) generalized equations in \(2t\) unknowns in the ring of \(p\)-adic integers \(\Z_p\). Finally we apply our results to sparse polynomial interpolation in \(\Z[x]\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hoisting ; Integers ; Interpolation ; Polynomials</subject><ispartof>arXiv.org, 2005-09</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0509026.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091645334?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Avendaño, Martin</creatorcontrib><creatorcontrib>Krick, Teresa</creatorcontrib><creatorcontrib>Pacetti, Ariel</creatorcontrib><title>Newton-Hensel Interpolation Lifting</title><title>arXiv.org</title><description>The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in \(Z[x]\) from information modulo a prime number \(p\ne 2\) to a power \(p^k\) for any \(k\), and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton-Hensel lifting of a system of \(2t\) generalized equations in \(2t\) unknowns in the ring of \(p\)-adic integers \(\Z_p\). Finally we apply our results to sparse polynomial interpolation in \(\Z[x]\)</description><subject>Hoisting</subject><subject>Integers</subject><subject>Interpolation</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9kstL8nP0_VIzStOzVHwzCtJLSrIz0ksyczPU_DJTCvJzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNLQzMTU2NjE2PiVAEArcQubg</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Avendaño, Martin</creator><creator>Krick, Teresa</creator><creator>Pacetti, Ariel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050901</creationdate><title>Newton-Hensel Interpolation Lifting</title><author>Avendaño, Martin ; Krick, Teresa ; Pacetti, Ariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20916453343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Hoisting</topic><topic>Integers</topic><topic>Interpolation</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Avendaño, Martin</creatorcontrib><creatorcontrib>Krick, Teresa</creatorcontrib><creatorcontrib>Pacetti, Ariel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avendaño, Martin</au><au>Krick, Teresa</au><au>Pacetti, Ariel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Newton-Hensel Interpolation Lifting</atitle><jtitle>arXiv.org</jtitle><date>2005-09-01</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in \(Z[x]\) from information modulo a prime number \(p\ne 2\) to a power \(p^k\) for any \(k\), and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton-Hensel lifting of a system of \(2t\) generalized equations in \(2t\) unknowns in the ring of \(p\)-adic integers \(\Z_p\). Finally we apply our results to sparse polynomial interpolation in \(\Z[x]\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091645334
source Publicly Available Content (ProQuest)
subjects Hoisting
Integers
Interpolation
Polynomials
title Newton-Hensel Interpolation Lifting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Newton-Hensel%20Interpolation%20Lifting&rft.jtitle=arXiv.org&rft.au=Avenda%C3%B1o,%20Martin&rft.date=2005-09-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091645334%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20916453343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091645334&rft_id=info:pmid/&rfr_iscdi=true