Loading…

Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals

Asymptotic forms of the Hilbert-Scmidt and Hilbert norms of positive definite Toeplitz matrices \(Q_{N}=(b(j-k))_{j,k=0}^{N-1}\) as \(N\to \infty \) are determined. Here \(b(j)\) are consequent trigonometric moments of a generating non-negative mesure \(d\sigma (\theta)\) on \([ -\pi ,\pi ] \). It i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2005-06
Main Authors: Adamyan, Vadim M, Iserte, Jose L, Tkachenko, Igor M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adamyan, Vadim M
Iserte, Jose L
Tkachenko, Igor M
description Asymptotic forms of the Hilbert-Scmidt and Hilbert norms of positive definite Toeplitz matrices \(Q_{N}=(b(j-k))_{j,k=0}^{N-1}\) as \(N\to \infty \) are determined. Here \(b(j)\) are consequent trigonometric moments of a generating non-negative mesure \(d\sigma (\theta)\) on \([ -\pi ,\pi ] \). It is proven that \(\sigma (\theta)\) is continuous if and only if any of those contributions is \(o(N)\). Analogous criteria are given for positive integral operators with difference kernels. Obtained results are applied to processing of stationary random signals, in particular, neutron signals emitted by boiling water nuclear reactors.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091660134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091660134</sourcerecordid><originalsourceid>FETCH-proquest_journals_20916601343</originalsourceid><addsrcrecordid>eNqNjtFKAzEQRUNBsGj_YcDnhWzSrvooRfED-l7C7qxOaTJpZlaoX-Enmy39gD5dLnPOZRZm6bxvm5e1c_dmJXKw1rru2W02fmn-3uQcs7JSDyhKMSgK8Aj6jZC4xEvJLKT0gzDgSIkUYceYj6S_UIVCfXVCGupZsVfiNEunKQg1GQvxUNd7jpkTJr0sioaZC-UMpZocQegrhaM8mruxBq6u-WCePt53288mFz5N9cX9gacyk3tnX9uus61f-9uof-K-WFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091660134</pqid></control><display><type>article</type><title>Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals</title><source>Publicly Available Content Database</source><creator>Adamyan, Vadim M ; Iserte, Jose L ; Tkachenko, Igor M</creator><creatorcontrib>Adamyan, Vadim M ; Iserte, Jose L ; Tkachenko, Igor M</creatorcontrib><description>Asymptotic forms of the Hilbert-Scmidt and Hilbert norms of positive definite Toeplitz matrices \(Q_{N}=(b(j-k))_{j,k=0}^{N-1}\) as \(N\to \infty \) are determined. Here \(b(j)\) are consequent trigonometric moments of a generating non-negative mesure \(d\sigma (\theta)\) on \([ -\pi ,\pi ] \). It is proven that \(\sigma (\theta)\) is continuous if and only if any of those contributions is \(o(N)\). Analogous criteria are given for positive integral operators with difference kernels. Obtained results are applied to processing of stationary random signals, in particular, neutron signals emitted by boiling water nuclear reactors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Boiling water reactors ; Mathematical analysis ; Matrix methods ; Norms ; Nuclear reactors ; Operators (mathematics) ; Random signals ; Signal processing</subject><ispartof>arXiv.org, 2005-06</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0506091.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091660134?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Adamyan, Vadim M</creatorcontrib><creatorcontrib>Iserte, Jose L</creatorcontrib><creatorcontrib>Tkachenko, Igor M</creatorcontrib><title>Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals</title><title>arXiv.org</title><description>Asymptotic forms of the Hilbert-Scmidt and Hilbert norms of positive definite Toeplitz matrices \(Q_{N}=(b(j-k))_{j,k=0}^{N-1}\) as \(N\to \infty \) are determined. Here \(b(j)\) are consequent trigonometric moments of a generating non-negative mesure \(d\sigma (\theta)\) on \([ -\pi ,\pi ] \). It is proven that \(\sigma (\theta)\) is continuous if and only if any of those contributions is \(o(N)\). Analogous criteria are given for positive integral operators with difference kernels. Obtained results are applied to processing of stationary random signals, in particular, neutron signals emitted by boiling water nuclear reactors.</description><subject>Asymptotic properties</subject><subject>Boiling water reactors</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Norms</subject><subject>Nuclear reactors</subject><subject>Operators (mathematics)</subject><subject>Random signals</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjtFKAzEQRUNBsGj_YcDnhWzSrvooRfED-l7C7qxOaTJpZlaoX-Enmy39gD5dLnPOZRZm6bxvm5e1c_dmJXKw1rru2W02fmn-3uQcs7JSDyhKMSgK8Aj6jZC4xEvJLKT0gzDgSIkUYceYj6S_UIVCfXVCGupZsVfiNEunKQg1GQvxUNd7jpkTJr0sioaZC-UMpZocQegrhaM8mruxBq6u-WCePt53288mFz5N9cX9gacyk3tnX9uus61f-9uof-K-WFo</recordid><startdate>20050606</startdate><enddate>20050606</enddate><creator>Adamyan, Vadim M</creator><creator>Iserte, Jose L</creator><creator>Tkachenko, Igor M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050606</creationdate><title>Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals</title><author>Adamyan, Vadim M ; Iserte, Jose L ; Tkachenko, Igor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20916601343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asymptotic properties</topic><topic>Boiling water reactors</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Norms</topic><topic>Nuclear reactors</topic><topic>Operators (mathematics)</topic><topic>Random signals</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Adamyan, Vadim M</creatorcontrib><creatorcontrib>Iserte, Jose L</creatorcontrib><creatorcontrib>Tkachenko, Igor M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamyan, Vadim M</au><au>Iserte, Jose L</au><au>Tkachenko, Igor M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals</atitle><jtitle>arXiv.org</jtitle><date>2005-06-06</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>Asymptotic forms of the Hilbert-Scmidt and Hilbert norms of positive definite Toeplitz matrices \(Q_{N}=(b(j-k))_{j,k=0}^{N-1}\) as \(N\to \infty \) are determined. Here \(b(j)\) are consequent trigonometric moments of a generating non-negative mesure \(d\sigma (\theta)\) on \([ -\pi ,\pi ] \). It is proven that \(\sigma (\theta)\) is continuous if and only if any of those contributions is \(o(N)\). Analogous criteria are given for positive integral operators with difference kernels. Obtained results are applied to processing of stationary random signals, in particular, neutron signals emitted by boiling water nuclear reactors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091660134
source Publicly Available Content Database
subjects Asymptotic properties
Boiling water reactors
Mathematical analysis
Matrix methods
Norms
Nuclear reactors
Operators (mathematics)
Random signals
Signal processing
title Asymptotic estimates of the norms of positive definite Toeplitz matrices and detection of quasi-periodic components of stationary random signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymptotic%20estimates%20of%20the%20norms%20of%20positive%20definite%20Toeplitz%20matrices%20and%20detection%20of%20quasi-periodic%20components%20of%20stationary%20random%20signals&rft.jtitle=arXiv.org&rft.au=Adamyan,%20Vadim%20M&rft.date=2005-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091660134%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20916601343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091660134&rft_id=info:pmid/&rfr_iscdi=true