Loading…

Front End CAMAC Controller for SLAC Control System

Most of the devices in the SLAC control system are accessed via interface modules in ~450 CAMAC crates. Low-cost controllers in these crates communicate via a SLAC-proprietary bit-serial protocol with 77 satellite control computers ("micros") within the accelerator complex. A proposed upgr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2001-11
Main Authors: Browne, M J, Gromme, A E, Siskind, E J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Browne, M J
Gromme, A E
Siskind, E J
description Most of the devices in the SLAC control system are accessed via interface modules in ~450 CAMAC crates. Low-cost controllers in these crates communicate via a SLAC-proprietary bit-serial protocol with 77 satellite control computers ("micros") within the accelerator complex. A proposed upgrade replaces the existing Multibus-I implementation of the micro hardware with commercial-off-the-shelf ("COTS") personal computers. For increased reliability and ease of maintenance, these micros will move from their current electrically noisy and environmentally challenging sites to the control center's computer room, with only a stand-alone portion of each micro's CAMAC interface remaining in the micro's original location. This paper describes the hardware/software architecture of that intelligent front-end CAMAC controller and the accompanying fiber optic link board that connects it to the PC-based micro's PCI bus. Emphasis is placed on the hardware/software techniques employed to minimize real-time latency for pulse-to-pulse operations that control accelerator timing, acquire data for fast feedback loops, and change device settings to close those loops. The controller provides the sole interface between the COTS computing/networking environment and the existing CAMAC plant. It also supports higher bandwidth commercial byte-serial crate controllers and legacy BITBUS hardware.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091947127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091947127</sourcerecordid><originalsourceid>FETCH-proquest_journals_20919471273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcivKzytRcM1LUXB29HV0VnAGcovyc3JSixTS8osUgn0QYgrBlcUlqbk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpaGlibmhkbkycKgAgwjJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091947127</pqid></control><display><type>article</type><title>Front End CAMAC Controller for SLAC Control System</title><source>Publicly Available Content (ProQuest)</source><creator>Browne, M J ; Gromme, A E ; Siskind, E J</creator><creatorcontrib>Browne, M J ; Gromme, A E ; Siskind, E J</creatorcontrib><description>Most of the devices in the SLAC control system are accessed via interface modules in ~450 CAMAC crates. Low-cost controllers in these crates communicate via a SLAC-proprietary bit-serial protocol with 77 satellite control computers ("micros") within the accelerator complex. A proposed upgrade replaces the existing Multibus-I implementation of the micro hardware with commercial-off-the-shelf ("COTS") personal computers. For increased reliability and ease of maintenance, these micros will move from their current electrically noisy and environmentally challenging sites to the control center's computer room, with only a stand-alone portion of each micro's CAMAC interface remaining in the micro's original location. This paper describes the hardware/software architecture of that intelligent front-end CAMAC controller and the accompanying fiber optic link board that connects it to the PC-based micro's PCI bus. Emphasis is placed on the hardware/software techniques employed to minimize real-time latency for pulse-to-pulse operations that control accelerator timing, acquire data for fast feedback loops, and change device settings to close those loops. The controller provides the sole interface between the COTS computing/networking environment and the existing CAMAC plant. It also supports higher bandwidth commercial byte-serial crate controllers and legacy BITBUS hardware.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bus interconnections ; Control systems ; Control theory ; Controllers ; Data buses ; Feedback loops ; Fiber optics ; Hardware ; Optical fibers ; Personal computers ; Satellite control ; Software</subject><ispartof>arXiv.org, 2001-11</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091947127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Browne, M J</creatorcontrib><creatorcontrib>Gromme, A E</creatorcontrib><creatorcontrib>Siskind, E J</creatorcontrib><title>Front End CAMAC Controller for SLAC Control System</title><title>arXiv.org</title><description>Most of the devices in the SLAC control system are accessed via interface modules in ~450 CAMAC crates. Low-cost controllers in these crates communicate via a SLAC-proprietary bit-serial protocol with 77 satellite control computers ("micros") within the accelerator complex. A proposed upgrade replaces the existing Multibus-I implementation of the micro hardware with commercial-off-the-shelf ("COTS") personal computers. For increased reliability and ease of maintenance, these micros will move from their current electrically noisy and environmentally challenging sites to the control center's computer room, with only a stand-alone portion of each micro's CAMAC interface remaining in the micro's original location. This paper describes the hardware/software architecture of that intelligent front-end CAMAC controller and the accompanying fiber optic link board that connects it to the PC-based micro's PCI bus. Emphasis is placed on the hardware/software techniques employed to minimize real-time latency for pulse-to-pulse operations that control accelerator timing, acquire data for fast feedback loops, and change device settings to close those loops. The controller provides the sole interface between the COTS computing/networking environment and the existing CAMAC plant. It also supports higher bandwidth commercial byte-serial crate controllers and legacy BITBUS hardware.</description><subject>Bus interconnections</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Data buses</subject><subject>Feedback loops</subject><subject>Fiber optics</subject><subject>Hardware</subject><subject>Optical fibers</subject><subject>Personal computers</subject><subject>Satellite control</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcivKzytRcM1LUXB29HV0VnAGcovyc3JSixTS8osUgn0QYgrBlcUlqbk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpaGlibmhkbkycKgAgwjJU</recordid><startdate>20011108</startdate><enddate>20011108</enddate><creator>Browne, M J</creator><creator>Gromme, A E</creator><creator>Siskind, E J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20011108</creationdate><title>Front End CAMAC Controller for SLAC Control System</title><author>Browne, M J ; Gromme, A E ; Siskind, E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20919471273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bus interconnections</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Data buses</topic><topic>Feedback loops</topic><topic>Fiber optics</topic><topic>Hardware</topic><topic>Optical fibers</topic><topic>Personal computers</topic><topic>Satellite control</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Browne, M J</creatorcontrib><creatorcontrib>Gromme, A E</creatorcontrib><creatorcontrib>Siskind, E J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browne, M J</au><au>Gromme, A E</au><au>Siskind, E J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Front End CAMAC Controller for SLAC Control System</atitle><jtitle>arXiv.org</jtitle><date>2001-11-08</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>Most of the devices in the SLAC control system are accessed via interface modules in ~450 CAMAC crates. Low-cost controllers in these crates communicate via a SLAC-proprietary bit-serial protocol with 77 satellite control computers ("micros") within the accelerator complex. A proposed upgrade replaces the existing Multibus-I implementation of the micro hardware with commercial-off-the-shelf ("COTS") personal computers. For increased reliability and ease of maintenance, these micros will move from their current electrically noisy and environmentally challenging sites to the control center's computer room, with only a stand-alone portion of each micro's CAMAC interface remaining in the micro's original location. This paper describes the hardware/software architecture of that intelligent front-end CAMAC controller and the accompanying fiber optic link board that connects it to the PC-based micro's PCI bus. Emphasis is placed on the hardware/software techniques employed to minimize real-time latency for pulse-to-pulse operations that control accelerator timing, acquire data for fast feedback loops, and change device settings to close those loops. The controller provides the sole interface between the COTS computing/networking environment and the existing CAMAC plant. It also supports higher bandwidth commercial byte-serial crate controllers and legacy BITBUS hardware.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2001-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091947127
source Publicly Available Content (ProQuest)
subjects Bus interconnections
Control systems
Control theory
Controllers
Data buses
Feedback loops
Fiber optics
Hardware
Optical fibers
Personal computers
Satellite control
Software
title Front End CAMAC Controller for SLAC Control System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Front%20End%20CAMAC%20Controller%20for%20SLAC%20Control%20System&rft.jtitle=arXiv.org&rft.au=Browne,%20M%20J&rft.date=2001-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091947127%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20919471273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091947127&rft_id=info:pmid/&rfr_iscdi=true