Loading…
On linear operators with p-nuclear adjoints
If \(p\in [1,+\infty]\) and \(T\) is a linear operator with \(p\)-nuclear adjoint from a Banach space \( X\) to a Banach space \(Y\) then if one of the spaces \(X^*\) or \(Y^{***}\) has the approximation property, then \(T\) belongs to the ideal \(N^p\) of operators which can be factored through dia...
Saved in:
Published in: | arXiv.org 2001-07 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg I |
description | If \(p\in [1,+\infty]\) and \(T\) is a linear operator with \(p\)-nuclear adjoint from a Banach space \( X\) to a Banach space \(Y\) then if one of the spaces \(X^*\) or \(Y^{***}\) has the approximation property, then \(T\) belongs to the ideal \(N^p\) of operators which can be factored through diagonal oparators \(l_{p'}\to l_1.\) On the other hand, there is a Banach space \(W\) such that \(W^{**}\) has a basis and such that for each \(p\in [1,+\infty], p\neq 2,\) there exists an operator \(T: W^{**}\to W\) with \(p\)-nuclear adjoint that is not in the ideal \(N^p,\) as an operator from \(W^{**}\) to \( W.\) |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091974271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091974271</sourcerecordid><originalsourceid>FETCH-proquest_journals_20919742713</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9s9TyMnMS00sUsgvSC1KLMkvKlYozyzJUCjQzStNzgFJJKZk5WfmlRTzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYGloaW5iZG5oTFxqgBVWzFa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091974271</pqid></control><display><type>article</type><title>On linear operators with p-nuclear adjoints</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg I</creator><creatorcontrib>Reinov, Oleg I</creatorcontrib><description>If \(p\in [1,+\infty]\) and \(T\) is a linear operator with \(p\)-nuclear adjoint from a Banach space \( X\) to a Banach space \(Y\) then if one of the spaces \(X^*\) or \(Y^{***}\) has the approximation property, then \(T\) belongs to the ideal \(N^p\) of operators which can be factored through diagonal oparators \(l_{p'}\to l_1.\) On the other hand, there is a Banach space \(W\) such that \(W^{**}\) has a basis and such that for each \(p\in [1,+\infty], p\neq 2,\) there exists an operator \(T: W^{**}\to W\) with \(p\)-nuclear adjoint that is not in the ideal \(N^p,\) as an operator from \(W^{**}\) to \( W.\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adjoints ; Banach spaces ; Linear operators</subject><ispartof>arXiv.org, 2001-07</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091974271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg I</creatorcontrib><title>On linear operators with p-nuclear adjoints</title><title>arXiv.org</title><description>If \(p\in [1,+\infty]\) and \(T\) is a linear operator with \(p\)-nuclear adjoint from a Banach space \( X\) to a Banach space \(Y\) then if one of the spaces \(X^*\) or \(Y^{***}\) has the approximation property, then \(T\) belongs to the ideal \(N^p\) of operators which can be factored through diagonal oparators \(l_{p'}\to l_1.\) On the other hand, there is a Banach space \(W\) such that \(W^{**}\) has a basis and such that for each \(p\in [1,+\infty], p\neq 2,\) there exists an operator \(T: W^{**}\to W\) with \(p\)-nuclear adjoint that is not in the ideal \(N^p,\) as an operator from \(W^{**}\) to \( W.\)</description><subject>Adjoints</subject><subject>Banach spaces</subject><subject>Linear operators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9s9TyMnMS00sUsgvSC1KLMkvKlYozyzJUCjQzStNzgFJJKZk5WfmlRTzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYGloaW5iZG5oTFxqgBVWzFa</recordid><startdate>20010716</startdate><enddate>20010716</enddate><creator>Reinov, Oleg I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20010716</creationdate><title>On linear operators with p-nuclear adjoints</title><author>Reinov, Oleg I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20919742713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adjoints</topic><topic>Banach spaces</topic><topic>Linear operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On linear operators with p-nuclear adjoints</atitle><jtitle>arXiv.org</jtitle><date>2001-07-16</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>If \(p\in [1,+\infty]\) and \(T\) is a linear operator with \(p\)-nuclear adjoint from a Banach space \( X\) to a Banach space \(Y\) then if one of the spaces \(X^*\) or \(Y^{***}\) has the approximation property, then \(T\) belongs to the ideal \(N^p\) of operators which can be factored through diagonal oparators \(l_{p'}\to l_1.\) On the other hand, there is a Banach space \(W\) such that \(W^{**}\) has a basis and such that for each \(p\in [1,+\infty], p\neq 2,\) there exists an operator \(T: W^{**}\to W\) with \(p\)-nuclear adjoint that is not in the ideal \(N^p,\) as an operator from \(W^{**}\) to \( W.\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2001-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091974271 |
source | Publicly Available Content Database |
subjects | Adjoints Banach spaces Linear operators |
title | On linear operators with p-nuclear adjoints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20linear%20operators%20with%20p-nuclear%20adjoints&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg%20I&rft.date=2001-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091974271%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20919742713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091974271&rft_id=info:pmid/&rfr_iscdi=true |