Loading…
On factorization of operators through the spaces \(l^p.\)
We give conditions on a pair of Banach spaces \(X\) and \(Y,\) under which each operator from \(X\) to \(Y,\) whose second adjoint factors compactly through the space \(l^p,\) \(1\le p\le+\infty\), itself compactly factors through \(l^p.\) The conditions are as follows: either the space \(X^*,\) or...
Saved in:
Published in: | arXiv.org 2001-07 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg I |
description | We give conditions on a pair of Banach spaces \(X\) and \(Y,\) under which each operator from \(X\) to \(Y,\) whose second adjoint factors compactly through the space \(l^p,\) \(1\le p\le+\infty\), itself compactly factors through \(l^p.\) The conditions are as follows: either the space \(X^*,\) or the space \(Y^{***}\) possesses the Grothendieck approximation property. Leaving the corresponding question for parameters \(p>1, p\neq 2,\) still open, we show that for \(p=1\) the conditions are essential. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091985549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091985549</sourcerecordid><originalsourceid>FETCH-proquest_journals_20919855493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9M9TSEtMLskvyqxKLMnMz1PIT1PIL0gtSgQKFSuUZBTll6ZnAOlUheKCxOTUYoUYjZy4Ar0YTR4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcysDS0tDA1NbE0Jk4VAGumNiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091985549</pqid></control><display><type>article</type><title>On factorization of operators through the spaces \(l^p.\)</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg I</creator><creatorcontrib>Reinov, Oleg I</creatorcontrib><description>We give conditions on a pair of Banach spaces \(X\) and \(Y,\) under which each operator from \(X\) to \(Y,\) whose second adjoint factors compactly through the space \(l^p,\) \(1\le p\le+\infty\), itself compactly factors through \(l^p.\) The conditions are as follows: either the space \(X^*,\) or the space \(Y^{***}\) possesses the Grothendieck approximation property. Leaving the corresponding question for parameters \(p>1, p\neq 2,\) still open, we show that for \(p=1\) the conditions are essential.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces</subject><ispartof>arXiv.org, 2001-07</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2091985549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg I</creatorcontrib><title>On factorization of operators through the spaces \(l^p.\)</title><title>arXiv.org</title><description>We give conditions on a pair of Banach spaces \(X\) and \(Y,\) under which each operator from \(X\) to \(Y,\) whose second adjoint factors compactly through the space \(l^p,\) \(1\le p\le+\infty\), itself compactly factors through \(l^p.\) The conditions are as follows: either the space \(X^*,\) or the space \(Y^{***}\) possesses the Grothendieck approximation property. Leaving the corresponding question for parameters \(p>1, p\neq 2,\) still open, we show that for \(p=1\) the conditions are essential.</description><subject>Banach spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9M9TSEtMLskvyqxKLMnMz1PIT1PIL0gtSgQKFSuUZBTll6ZnAOlUheKCxOTUYoUYjZy4Ar0YTR4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcysDS0tDA1NbE0Jk4VAGumNiY</recordid><startdate>20010720</startdate><enddate>20010720</enddate><creator>Reinov, Oleg I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20010720</creationdate><title>On factorization of operators through the spaces \(l^p.\)</title><author>Reinov, Oleg I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20919855493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Banach spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On factorization of operators through the spaces \(l^p.\)</atitle><jtitle>arXiv.org</jtitle><date>2001-07-20</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>We give conditions on a pair of Banach spaces \(X\) and \(Y,\) under which each operator from \(X\) to \(Y,\) whose second adjoint factors compactly through the space \(l^p,\) \(1\le p\le+\infty\), itself compactly factors through \(l^p.\) The conditions are as follows: either the space \(X^*,\) or the space \(Y^{***}\) possesses the Grothendieck approximation property. Leaving the corresponding question for parameters \(p>1, p\neq 2,\) still open, we show that for \(p=1\) the conditions are essential.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2001-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091985549 |
source | Publicly Available Content Database |
subjects | Banach spaces |
title | On factorization of operators through the spaces \(l^p.\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20factorization%20of%20operators%20through%20the%20spaces%20%5C(l%5Ep.%5C)&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg%20I&rft.date=2001-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091985549%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20919855493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2091985549&rft_id=info:pmid/&rfr_iscdi=true |