Loading…
Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions
Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐i...
Saved in:
Published in: | Journal of geophysical research. Solid earth 2018-07, Vol.123 (7), p.5515-5531 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463 |
---|---|
cites | cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463 |
container_end_page | 5531 |
container_issue | 7 |
container_start_page | 5515 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 123 |
creator | Tateno, Shigehiko Hirose, Kei Sakata, Shuhei Yonemitsu, Kyoko Ozawa, Haruka Hirata, Takafumi Hirao, Naohisa Ohishi, Yasuo |
description | Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface.
Key Points
Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure
Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite
Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site |
doi_str_mv | 10.1029/2018JB015790 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092195551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092195551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCpbamw8Q8Opq_jc52lKrpaWlKB6X7CarW7ZJTVJK396tFfHkXGYYPmaYAeAaozuMiLonCMvpEGGeK3QGegQLlSnKxflvjeklGMS4Rl3IroVZD7zNbZsa9w6XHzpauLKtTo13EWpn4Li1G-sSXOqQmmP7CBsH54vVECYPZ35vw8bHBOfapdbCkXfmG8YrcFHrNtrBT-6D18fxy-gpmy0mz6OHWaapEjyrBJXWlKaieV3VKC-FLLFSxkhtiJWGMVGW1tRa1JQRpI0UArPu3pyzkjBB--DmNHcb_OfOxlSs_S64bmVBkCJYcc5xp25Pqgo-xmDrYhuajQ6HAqPi-L3i7_c6Tk9837T28K8tppPVkBOpOP0CrmVv-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092195551</pqid></control><display><type>article</type><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</creator><creatorcontrib>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</creatorcontrib><description>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface.
Key Points
Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure
Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite
Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB015790</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Ablation ; Basalt ; Cations ; Coefficients ; Composition ; Compressibility ; Convection ; Crystallization ; DAC ; Density ; Deoxyribonucleic acid ; Diamonds ; DNA ; Electron microprobe ; Electron probes ; element partitioning ; Geophysics ; high pressure ; Inductively coupled plasma mass spectrometry ; Iron ; Laser ablation ; Laser beam heating ; Lasers ; Liquidus ; Lower mantle ; Mantle ; Mantle convection ; Mass spectrometry ; Melting ; Melts ; Partitioning ; Perovskites ; Pressure ; Pressure effects ; Silica ; Silicon dioxide ; Solid phases ; Trace elements ; Unity</subject><ispartof>Journal of geophysical research. Solid earth, 2018-07, Vol.123 (7), p.5515-5531</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</citedby><cites>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</cites><orcidid>0000-0003-4366-7721 ; 0000-0002-0320-0302 ; 0000-0003-2597-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tateno, Shigehiko</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Yonemitsu, Kyoko</creatorcontrib><creatorcontrib>Ozawa, Haruka</creatorcontrib><creatorcontrib>Hirata, Takafumi</creatorcontrib><creatorcontrib>Hirao, Naohisa</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><title>Journal of geophysical research. Solid earth</title><description>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface.
Key Points
Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure
Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite
Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</description><subject>Ablation</subject><subject>Basalt</subject><subject>Cations</subject><subject>Coefficients</subject><subject>Composition</subject><subject>Compressibility</subject><subject>Convection</subject><subject>Crystallization</subject><subject>DAC</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>Diamonds</subject><subject>DNA</subject><subject>Electron microprobe</subject><subject>Electron probes</subject><subject>element partitioning</subject><subject>Geophysics</subject><subject>high pressure</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Iron</subject><subject>Laser ablation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Liquidus</subject><subject>Lower mantle</subject><subject>Mantle</subject><subject>Mantle convection</subject><subject>Mass spectrometry</subject><subject>Melting</subject><subject>Melts</subject><subject>Partitioning</subject><subject>Perovskites</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid phases</subject><subject>Trace elements</subject><subject>Unity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCpbamw8Q8Opq_jc52lKrpaWlKB6X7CarW7ZJTVJK396tFfHkXGYYPmaYAeAaozuMiLonCMvpEGGeK3QGegQLlSnKxflvjeklGMS4Rl3IroVZD7zNbZsa9w6XHzpauLKtTo13EWpn4Li1G-sSXOqQmmP7CBsH54vVECYPZ35vw8bHBOfapdbCkXfmG8YrcFHrNtrBT-6D18fxy-gpmy0mz6OHWaapEjyrBJXWlKaieV3VKC-FLLFSxkhtiJWGMVGW1tRa1JQRpI0UArPu3pyzkjBB--DmNHcb_OfOxlSs_S64bmVBkCJYcc5xp25Pqgo-xmDrYhuajQ6HAqPi-L3i7_c6Tk9837T28K8tppPVkBOpOP0CrmVv-Q</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Tateno, Shigehiko</creator><creator>Hirose, Kei</creator><creator>Sakata, Shuhei</creator><creator>Yonemitsu, Kyoko</creator><creator>Ozawa, Haruka</creator><creator>Hirata, Takafumi</creator><creator>Hirao, Naohisa</creator><creator>Ohishi, Yasuo</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4366-7721</orcidid><orcidid>https://orcid.org/0000-0002-0320-0302</orcidid><orcidid>https://orcid.org/0000-0003-2597-7793</orcidid></search><sort><creationdate>201807</creationdate><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><author>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Basalt</topic><topic>Cations</topic><topic>Coefficients</topic><topic>Composition</topic><topic>Compressibility</topic><topic>Convection</topic><topic>Crystallization</topic><topic>DAC</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>Diamonds</topic><topic>DNA</topic><topic>Electron microprobe</topic><topic>Electron probes</topic><topic>element partitioning</topic><topic>Geophysics</topic><topic>high pressure</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Iron</topic><topic>Laser ablation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Liquidus</topic><topic>Lower mantle</topic><topic>Mantle</topic><topic>Mantle convection</topic><topic>Mass spectrometry</topic><topic>Melting</topic><topic>Melts</topic><topic>Partitioning</topic><topic>Perovskites</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid phases</topic><topic>Trace elements</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tateno, Shigehiko</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Yonemitsu, Kyoko</creatorcontrib><creatorcontrib>Ozawa, Haruka</creatorcontrib><creatorcontrib>Hirata, Takafumi</creatorcontrib><creatorcontrib>Hirao, Naohisa</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tateno, Shigehiko</au><au>Hirose, Kei</au><au>Sakata, Shuhei</au><au>Yonemitsu, Kyoko</au><au>Ozawa, Haruka</au><au>Hirata, Takafumi</au><au>Hirao, Naohisa</au><au>Ohishi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-07</date><risdate>2018</risdate><volume>123</volume><issue>7</issue><spage>5515</spage><epage>5531</epage><pages>5515-5531</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface.
Key Points
Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure
Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite
Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB015790</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4366-7721</orcidid><orcidid>https://orcid.org/0000-0002-0320-0302</orcidid><orcidid>https://orcid.org/0000-0003-2597-7793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2018-07, Vol.123 (7), p.5515-5531 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2092195551 |
source | Wiley; Alma/SFX Local Collection |
subjects | Ablation Basalt Cations Coefficients Composition Compressibility Convection Crystallization DAC Density Deoxyribonucleic acid Diamonds DNA Electron microprobe Electron probes element partitioning Geophysics high pressure Inductively coupled plasma mass spectrometry Iron Laser ablation Laser beam heating Lasers Liquidus Lower mantle Mantle Mantle convection Mass spectrometry Melting Melts Partitioning Perovskites Pressure Pressure effects Silica Silicon dioxide Solid phases Trace elements Unity |
title | Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Phase%20Relations%20and%20Element%20Partitioning%20in%20MORB%20to%20Lowermost%20Mantle%20Conditions&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Tateno,%20Shigehiko&rft.date=2018-07&rft.volume=123&rft.issue=7&rft.spage=5515&rft.epage=5531&rft.pages=5515-5531&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB015790&rft_dat=%3Cproquest_cross%3E2092195551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092195551&rft_id=info:pmid/&rfr_iscdi=true |