Loading…

Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions

Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2018-07, Vol.123 (7), p.5515-5531
Main Authors: Tateno, Shigehiko, Hirose, Kei, Sakata, Shuhei, Yonemitsu, Kyoko, Ozawa, Haruka, Hirata, Takafumi, Hirao, Naohisa, Ohishi, Yasuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463
cites cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463
container_end_page 5531
container_issue 7
container_start_page 5515
container_title Journal of geophysical research. Solid earth
container_volume 123
creator Tateno, Shigehiko
Hirose, Kei
Sakata, Shuhei
Yonemitsu, Kyoko
Ozawa, Haruka
Hirata, Takafumi
Hirao, Naohisa
Ohishi, Yasuo
description Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface. Key Points Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site
doi_str_mv 10.1029/2018JB015790
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092195551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092195551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCpbamw8Q8Opq_jc52lKrpaWlKB6X7CarW7ZJTVJK396tFfHkXGYYPmaYAeAaozuMiLonCMvpEGGeK3QGegQLlSnKxflvjeklGMS4Rl3IroVZD7zNbZsa9w6XHzpauLKtTo13EWpn4Li1G-sSXOqQmmP7CBsH54vVECYPZ35vw8bHBOfapdbCkXfmG8YrcFHrNtrBT-6D18fxy-gpmy0mz6OHWaapEjyrBJXWlKaieV3VKC-FLLFSxkhtiJWGMVGW1tRa1JQRpI0UArPu3pyzkjBB--DmNHcb_OfOxlSs_S64bmVBkCJYcc5xp25Pqgo-xmDrYhuajQ6HAqPi-L3i7_c6Tk9837T28K8tppPVkBOpOP0CrmVv-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092195551</pqid></control><display><type>article</type><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</creator><creatorcontrib>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</creatorcontrib><description>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface. Key Points Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB015790</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Ablation ; Basalt ; Cations ; Coefficients ; Composition ; Compressibility ; Convection ; Crystallization ; DAC ; Density ; Deoxyribonucleic acid ; Diamonds ; DNA ; Electron microprobe ; Electron probes ; element partitioning ; Geophysics ; high pressure ; Inductively coupled plasma mass spectrometry ; Iron ; Laser ablation ; Laser beam heating ; Lasers ; Liquidus ; Lower mantle ; Mantle ; Mantle convection ; Mass spectrometry ; Melting ; Melts ; Partitioning ; Perovskites ; Pressure ; Pressure effects ; Silica ; Silicon dioxide ; Solid phases ; Trace elements ; Unity</subject><ispartof>Journal of geophysical research. Solid earth, 2018-07, Vol.123 (7), p.5515-5531</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</citedby><cites>FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</cites><orcidid>0000-0003-4366-7721 ; 0000-0002-0320-0302 ; 0000-0003-2597-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tateno, Shigehiko</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Yonemitsu, Kyoko</creatorcontrib><creatorcontrib>Ozawa, Haruka</creatorcontrib><creatorcontrib>Hirata, Takafumi</creatorcontrib><creatorcontrib>Hirao, Naohisa</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><title>Journal of geophysical research. Solid earth</title><description>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface. Key Points Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</description><subject>Ablation</subject><subject>Basalt</subject><subject>Cations</subject><subject>Coefficients</subject><subject>Composition</subject><subject>Compressibility</subject><subject>Convection</subject><subject>Crystallization</subject><subject>DAC</subject><subject>Density</subject><subject>Deoxyribonucleic acid</subject><subject>Diamonds</subject><subject>DNA</subject><subject>Electron microprobe</subject><subject>Electron probes</subject><subject>element partitioning</subject><subject>Geophysics</subject><subject>high pressure</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Iron</subject><subject>Laser ablation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Liquidus</subject><subject>Lower mantle</subject><subject>Mantle</subject><subject>Mantle convection</subject><subject>Mass spectrometry</subject><subject>Melting</subject><subject>Melts</subject><subject>Partitioning</subject><subject>Perovskites</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid phases</subject><subject>Trace elements</subject><subject>Unity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCpbamw8Q8Opq_jc52lKrpaWlKB6X7CarW7ZJTVJK396tFfHkXGYYPmaYAeAaozuMiLonCMvpEGGeK3QGegQLlSnKxflvjeklGMS4Rl3IroVZD7zNbZsa9w6XHzpauLKtTo13EWpn4Li1G-sSXOqQmmP7CBsH54vVECYPZ35vw8bHBOfapdbCkXfmG8YrcFHrNtrBT-6D18fxy-gpmy0mz6OHWaapEjyrBJXWlKaieV3VKC-FLLFSxkhtiJWGMVGW1tRa1JQRpI0UArPu3pyzkjBB--DmNHcb_OfOxlSs_S64bmVBkCJYcc5xp25Pqgo-xmDrYhuajQ6HAqPi-L3i7_c6Tk9837T28K8tppPVkBOpOP0CrmVv-Q</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Tateno, Shigehiko</creator><creator>Hirose, Kei</creator><creator>Sakata, Shuhei</creator><creator>Yonemitsu, Kyoko</creator><creator>Ozawa, Haruka</creator><creator>Hirata, Takafumi</creator><creator>Hirao, Naohisa</creator><creator>Ohishi, Yasuo</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4366-7721</orcidid><orcidid>https://orcid.org/0000-0002-0320-0302</orcidid><orcidid>https://orcid.org/0000-0003-2597-7793</orcidid></search><sort><creationdate>201807</creationdate><title>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</title><author>Tateno, Shigehiko ; Hirose, Kei ; Sakata, Shuhei ; Yonemitsu, Kyoko ; Ozawa, Haruka ; Hirata, Takafumi ; Hirao, Naohisa ; Ohishi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Basalt</topic><topic>Cations</topic><topic>Coefficients</topic><topic>Composition</topic><topic>Compressibility</topic><topic>Convection</topic><topic>Crystallization</topic><topic>DAC</topic><topic>Density</topic><topic>Deoxyribonucleic acid</topic><topic>Diamonds</topic><topic>DNA</topic><topic>Electron microprobe</topic><topic>Electron probes</topic><topic>element partitioning</topic><topic>Geophysics</topic><topic>high pressure</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Iron</topic><topic>Laser ablation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Liquidus</topic><topic>Lower mantle</topic><topic>Mantle</topic><topic>Mantle convection</topic><topic>Mass spectrometry</topic><topic>Melting</topic><topic>Melts</topic><topic>Partitioning</topic><topic>Perovskites</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid phases</topic><topic>Trace elements</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tateno, Shigehiko</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Yonemitsu, Kyoko</creatorcontrib><creatorcontrib>Ozawa, Haruka</creatorcontrib><creatorcontrib>Hirata, Takafumi</creatorcontrib><creatorcontrib>Hirao, Naohisa</creatorcontrib><creatorcontrib>Ohishi, Yasuo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tateno, Shigehiko</au><au>Hirose, Kei</au><au>Sakata, Shuhei</au><au>Yonemitsu, Kyoko</au><au>Ozawa, Haruka</au><au>Hirata, Takafumi</au><au>Hirao, Naohisa</au><au>Ohishi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-07</date><risdate>2018</risdate><volume>123</volume><issue>7</issue><spage>5515</spage><epage>5531</epage><pages>5515-5531</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Melting phase relations and crystal‐melt element partitioning in a mid‐oceanic ridge basalt bulk composition were studied to 135 GPa using laser‐heated diamond‐anvil cell techniques. Using field‐emission‐type electron microprobe (FE‐EPMA), transmission electron microscope (TEM), and laser ablation‐inductively‐coupled plasma mass spectrometer (LA‐ICP‐MS), we obtained comprehensive analyses of major and trace elements in coexisting melt and solid phases. CaSiO3‐perovskite (Ca‐pv) was found to be the liquidus phase throughout the lower mantle pressure range. Whereas silica, followed by Mg‐perovskite, are the second and third crystallizing phases to pressures exceeding 100 GPa, postperovskite, closely followed by seifertite, succeed Ca‐pv at 135 GPa. The partitioning of trace elements between Ca‐pv and melts exhibited a strong pressure effect, possibly due to a combination of high compressibility of cations compared to the lattice site in Ca‐pv and melt compressional effects. The Ca‐pv/melt partition coefficients for Na and K (DNa and DK) increase with increasing pressure, with DNa close to unity and DK greater than unity at lowermost mantle pressures. Also, DNd becomes larger (or identical within uncertainty) than DSm in the deep lower mantle. Partial melt formed by 51% partial melting of mid‐oceanic ridge basalt at 135 GPa showed marked iron‐enrichment and should thus have negative buoyancy at the base of the mantle. The density of residual solid is almost identical to the PREM density, and therefore, it is likely to be involved in mantle convection and recycled to the surface. Key Points Melting relations and element partitioning in MORB have been studied comprehensively by EPMA, TEM, LA‐ICP‐MS, and XRD to the CMB pressure Iron‐rich partial melts form from MORB materials at the base of the mantle, whose liquidus phase is Ca‐perovskite Strong pressure effect on Ca‐pv/melt element partitioning due to higher compressibility of large cations compared to a crystal lattice site</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB015790</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4366-7721</orcidid><orcidid>https://orcid.org/0000-0002-0320-0302</orcidid><orcidid>https://orcid.org/0000-0003-2597-7793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2018-07, Vol.123 (7), p.5515-5531
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2092195551
source Wiley; Alma/SFX Local Collection
subjects Ablation
Basalt
Cations
Coefficients
Composition
Compressibility
Convection
Crystallization
DAC
Density
Deoxyribonucleic acid
Diamonds
DNA
Electron microprobe
Electron probes
element partitioning
Geophysics
high pressure
Inductively coupled plasma mass spectrometry
Iron
Laser ablation
Laser beam heating
Lasers
Liquidus
Lower mantle
Mantle
Mantle convection
Mass spectrometry
Melting
Melts
Partitioning
Perovskites
Pressure
Pressure effects
Silica
Silicon dioxide
Solid phases
Trace elements
Unity
title Melting Phase Relations and Element Partitioning in MORB to Lowermost Mantle Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20Phase%20Relations%20and%20Element%20Partitioning%20in%20MORB%20to%20Lowermost%20Mantle%20Conditions&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Tateno,%20Shigehiko&rft.date=2018-07&rft.volume=123&rft.issue=7&rft.spage=5515&rft.epage=5531&rft.pages=5515-5531&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB015790&rft_dat=%3Cproquest_cross%3E2092195551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3965-c638edbdc37fcf07b68b199dd8ad2e8d446bbedfa6f3420ad86614102754b2463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092195551&rft_id=info:pmid/&rfr_iscdi=true