Loading…
When are recommender systems useful?
Recommender systems are crucial tools to overcome the information overload brought about by the Internet. Rigorous tests are needed to establish to what extent sophisticated methods can improve the quality of the predictions. Here we analyse a refined correlation-based collaborative filtering algori...
Saved in:
Published in: | arXiv.org 2007-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recommender systems are crucial tools to overcome the information overload brought about by the Internet. Rigorous tests are needed to establish to what extent sophisticated methods can improve the quality of the predictions. Here we analyse a refined correlation-based collaborative filtering algorithm and compare it with a novel spectral method for recommending. We test them on two databases that bear different statistical properties (MovieLens and Jester) without filtering out the less active users and ordering the opinions in time, whenever possible. We find that, when the distribution of user-user correlations is narrow, simple averages work nearly as well as advanced methods. Recommender systems can, on the other hand, exploit a great deal of additional information in systems where external influence is negligible and peoples' tastes emerge entirely. These findings are validated by simulations with artificially generated data. |
---|---|
ISSN: | 2331-8422 |