Loading…
On parametrization of linear pseudo-differential boundary value control systems
The paper considers pseudo-differential boundary value control systems. The underlying operators form an algebra D with the help of which we are able to formulate typical boundary value control problems. The symbolic calculus gives tools to form e.g. compositions, formal adjoints, generalized right...
Saved in:
Published in: | arXiv.org 2007-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tervo, Jouko Nihtilä, Markku Kokkonen, Petri |
description | The paper considers pseudo-differential boundary value control systems. The underlying operators form an algebra D with the help of which we are able to formulate typical boundary value control problems. The symbolic calculus gives tools to form e.g. compositions, formal adjoints, generalized right or left inverses and compatibility conditions. By a parametrizability we mean that for a given control system Au=0 one finds an operator S such that Au=0 if and only if u=Sf. The computation rules of D (or its appropriate subalgebra D') guarantee that in many applications S can be refinely analyzed or even explicitly calculated. We outline some methods of homological algebra for the study of parametrization S. Especially the projectivity of a certain factor module (defined by the system equations) implies the parametrizability. We give some examples to illustrate our computational methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092346338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092346338</sourcerecordid><originalsourceid>FETCH-proquest_journals_20923463383</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScCzVpa51FcXNxL6e9QEqaq5dEqE-vgw_g9A_fvxCZ0npXtJVSK5GHMJRlqZq9qmudievVywkYRoxs3xAteUlGOusRWE4BU09Fb41BRh8tOHmn5HvgWb7AJZQP8pHJyTCHiGPYiKUBFzD_dS2259PteCkmpmfCELuBEvsvdao8KF01Wrf6v-sDsuM_zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092346338</pqid></control><display><type>article</type><title>On parametrization of linear pseudo-differential boundary value control systems</title><source>Publicly Available Content (ProQuest)</source><creator>Tervo, Jouko ; Nihtilä, Markku ; Kokkonen, Petri</creator><creatorcontrib>Tervo, Jouko ; Nihtilä, Markku ; Kokkonen, Petri</creatorcontrib><description>The paper considers pseudo-differential boundary value control systems. The underlying operators form an algebra D with the help of which we are able to formulate typical boundary value control problems. The symbolic calculus gives tools to form e.g. compositions, formal adjoints, generalized right or left inverses and compatibility conditions. By a parametrizability we mean that for a given control system Au=0 one finds an operator S such that Au=0 if and only if u=Sf. The computation rules of D (or its appropriate subalgebra D') guarantee that in many applications S can be refinely analyzed or even explicitly calculated. We outline some methods of homological algebra for the study of parametrization S. Especially the projectivity of a certain factor module (defined by the system equations) implies the parametrizability. We give some examples to illustrate our computational methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adjoints ; Boundary value problems ; Control systems ; Homology ; Mathematical analysis ; Operators (mathematics) ; Parameterization</subject><ispartof>arXiv.org, 2007-04</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0704.2104.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2092346338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Tervo, Jouko</creatorcontrib><creatorcontrib>Nihtilä, Markku</creatorcontrib><creatorcontrib>Kokkonen, Petri</creatorcontrib><title>On parametrization of linear pseudo-differential boundary value control systems</title><title>arXiv.org</title><description>The paper considers pseudo-differential boundary value control systems. The underlying operators form an algebra D with the help of which we are able to formulate typical boundary value control problems. The symbolic calculus gives tools to form e.g. compositions, formal adjoints, generalized right or left inverses and compatibility conditions. By a parametrizability we mean that for a given control system Au=0 one finds an operator S such that Au=0 if and only if u=Sf. The computation rules of D (or its appropriate subalgebra D') guarantee that in many applications S can be refinely analyzed or even explicitly calculated. We outline some methods of homological algebra for the study of parametrization S. Especially the projectivity of a certain factor module (defined by the system equations) implies the parametrizability. We give some examples to illustrate our computational methods.</description><subject>Adjoints</subject><subject>Boundary value problems</subject><subject>Control systems</subject><subject>Homology</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Parameterization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScCzVpa51FcXNxL6e9QEqaq5dEqE-vgw_g9A_fvxCZ0npXtJVSK5GHMJRlqZq9qmudievVywkYRoxs3xAteUlGOusRWE4BU09Fb41BRh8tOHmn5HvgWb7AJZQP8pHJyTCHiGPYiKUBFzD_dS2259PteCkmpmfCELuBEvsvdao8KF01Wrf6v-sDsuM_zw</recordid><startdate>20070417</startdate><enddate>20070417</enddate><creator>Tervo, Jouko</creator><creator>Nihtilä, Markku</creator><creator>Kokkonen, Petri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070417</creationdate><title>On parametrization of linear pseudo-differential boundary value control systems</title><author>Tervo, Jouko ; Nihtilä, Markku ; Kokkonen, Petri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20923463383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adjoints</topic><topic>Boundary value problems</topic><topic>Control systems</topic><topic>Homology</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Parameterization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tervo, Jouko</creatorcontrib><creatorcontrib>Nihtilä, Markku</creatorcontrib><creatorcontrib>Kokkonen, Petri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tervo, Jouko</au><au>Nihtilä, Markku</au><au>Kokkonen, Petri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On parametrization of linear pseudo-differential boundary value control systems</atitle><jtitle>arXiv.org</jtitle><date>2007-04-17</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>The paper considers pseudo-differential boundary value control systems. The underlying operators form an algebra D with the help of which we are able to formulate typical boundary value control problems. The symbolic calculus gives tools to form e.g. compositions, formal adjoints, generalized right or left inverses and compatibility conditions. By a parametrizability we mean that for a given control system Au=0 one finds an operator S such that Au=0 if and only if u=Sf. The computation rules of D (or its appropriate subalgebra D') guarantee that in many applications S can be refinely analyzed or even explicitly calculated. We outline some methods of homological algebra for the study of parametrization S. Especially the projectivity of a certain factor module (defined by the system equations) implies the parametrizability. We give some examples to illustrate our computational methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2007-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2092346338 |
source | Publicly Available Content (ProQuest) |
subjects | Adjoints Boundary value problems Control systems Homology Mathematical analysis Operators (mathematics) Parameterization |
title | On parametrization of linear pseudo-differential boundary value control systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20parametrization%20of%20linear%20pseudo-differential%20boundary%20value%20control%20systems&rft.jtitle=arXiv.org&rft.au=Tervo,%20Jouko&rft.date=2007-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092346338%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20923463383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092346338&rft_id=info:pmid/&rfr_iscdi=true |