Loading…
Bootstrapping a Tagged Corpus through Combination of Existing Heterogeneous Taggers
This paper describes a new method, Combi-bootstrap, to exploit existing taggers and lexical resources for the annotation of corpora with new tagsets. Combi-bootstrap uses existing resources as features for a second level machine learning module, that is trained to make the mapping to the new tagset...
Saved in:
Published in: | arXiv.org 2000-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a new method, Combi-bootstrap, to exploit existing taggers and lexical resources for the annotation of corpora with new tagsets. Combi-bootstrap uses existing resources as features for a second level machine learning module, that is trained to make the mapping to the new tagset on a very small sample of annotated corpus material. Experiments show that Combi-bootstrap: i) can integrate a wide variety of existing resources, and ii) achieves much higher accuracy (up to 44.7 % error reduction) than both the best single tagger and an ensemble tagger constructed out of the same small training sample. |
---|---|
ISSN: | 2331-8422 |