Loading…
Many Random Walks Are Faster Than One
We pose a new and intriguing question motivated by distributed computing regarding random walks on graphs: How long does it take for several independent random walks, starting from the same vertex, to cover an entire graph? We study the cover time - the expected time required to visit every node in...
Saved in:
Published in: | arXiv.org 2007-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We pose a new and intriguing question motivated by distributed computing regarding random walks on graphs: How long does it take for several independent random walks, starting from the same vertex, to cover an entire graph? We study the cover time - the expected time required to visit every node in a graph at least once - and we show that for a large collection of interesting graphs, running many random walks in parallel yields a speed-up in the cover time that is linear in the number of parallel walks. We demonstrate that an exponential speed-up is sometimes possible, but that some natural graphs allow only a logarithmic speed-up. A problem related to ours (in which the walks start from some probabilistic distribution on vertices) was previously studied in the context of space efficient algorithms for undirected s-t connectivity and our results yield, in certain cases, an improvement upon some of the earlier bounds. |
---|---|
ISSN: | 2331-8422 |