Loading…
Violation of the principle of Complementarity, and its implications
Bohr's principle of complementarity predicts that in a welcher weg ("which-way") experiment, obtaining fully visible interference pattern should lead to the destruction of the path knowledge. Here I report a failure for this prediction in an optical interferometry experiment. Coherent...
Saved in:
Published in: | arXiv.org 2007-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bohr's principle of complementarity predicts that in a welcher weg ("which-way") experiment, obtaining fully visible interference pattern should lead to the destruction of the path knowledge. Here I report a failure for this prediction in an optical interferometry experiment. Coherent laser light is passed through a dual pinhole and allowed to go through a converging lens, which forms well-resolved images of the respective pinholes, providing complete path knowledge. A series of thin wires are then placed at previously measured positions corresponding to the dark fringes of the interference pattern upstream of the lens. No reduction in the resolution and total radiant flux of either image is found in direct disagreement with the predictions of the principle of complementarity. In this paper, a critique of the current measurement theory is offered, and a novel nonperturbative technique for ensemble properties is introduced. Also, another version of this experiment without an imaging lens is suggested, and some of the implications of the violation of complementarity for another suggested experiment to investigate the nature of the photon and its "empty wave" is briefly discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0701027 |