Loading…
Analysis of Network Lasso for Semi-Supervised Regression
We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jung, A Vesselinova, N |
description | We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092785142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092785142</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927851423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcMxLzKkszixWyE9T8EstKc8vylbwSSwuzldIyy9SCE7NzdQNLi1ILSrLLE5NUQhKTS9KLS7OzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4vjjQwsjcwtTA1NjIyJUwUARBQ2Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092785142</pqid></control><display><type>article</type><title>Analysis of Network Lasso for Semi-Supervised Regression</title><source>Publicly Available Content Database</source><creator>Jung, A ; Vesselinova, N</creator><creatorcontrib>Jung, A ; Vesselinova, N</creatorcontrib><description>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Empirical analysis ; Error analysis ; Machine learning ; Message passing ; Network analysis ; Regression analysis ; Regression models</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2092785142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Jung, A</creatorcontrib><creatorcontrib>Vesselinova, N</creatorcontrib><title>Analysis of Network Lasso for Semi-Supervised Regression</title><title>arXiv.org</title><description>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</description><subject>Clustering</subject><subject>Empirical analysis</subject><subject>Error analysis</subject><subject>Machine learning</subject><subject>Message passing</subject><subject>Network analysis</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcMxLzKkszixWyE9T8EstKc8vylbwSSwuzldIyy9SCE7NzdQNLi1ILSrLLE5NUQhKTS9KLS7OzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4vjjQwsjcwtTA1NjIyJUwUARBQ2Hw</recordid><startdate>20181227</startdate><enddate>20181227</enddate><creator>Jung, A</creator><creator>Vesselinova, N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181227</creationdate><title>Analysis of Network Lasso for Semi-Supervised Regression</title><author>Jung, A ; Vesselinova, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927851423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clustering</topic><topic>Empirical analysis</topic><topic>Error analysis</topic><topic>Machine learning</topic><topic>Message passing</topic><topic>Network analysis</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>online_resources</toplevel><creatorcontrib>Jung, A</creatorcontrib><creatorcontrib>Vesselinova, N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, A</au><au>Vesselinova, N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analysis of Network Lasso for Semi-Supervised Regression</atitle><jtitle>arXiv.org</jtitle><date>2018-12-27</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2092785142 |
source | Publicly Available Content Database |
subjects | Clustering Empirical analysis Error analysis Machine learning Message passing Network analysis Regression analysis Regression models |
title | Analysis of Network Lasso for Semi-Supervised Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analysis%20of%20Network%20Lasso%20for%20Semi-Supervised%20Regression&rft.jtitle=arXiv.org&rft.au=Jung,%20A&rft.date=2018-12-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092785142%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20927851423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092785142&rft_id=info:pmid/&rfr_iscdi=true |