Loading…

Analysis of Network Lasso for Semi-Supervised Regression

We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-12
Main Authors: Jung, A, Vesselinova, N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jung, A
Vesselinova, N
description We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092785142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092785142</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927851423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcMxLzKkszixWyE9T8EstKc8vylbwSSwuzldIyy9SCE7NzdQNLi1ILSrLLE5NUQhKTS9KLS7OzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4vjjQwsjcwtTA1NjIyJUwUARBQ2Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092785142</pqid></control><display><type>article</type><title>Analysis of Network Lasso for Semi-Supervised Regression</title><source>Publicly Available Content Database</source><creator>Jung, A ; Vesselinova, N</creator><creatorcontrib>Jung, A ; Vesselinova, N</creatorcontrib><description>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Empirical analysis ; Error analysis ; Machine learning ; Message passing ; Network analysis ; Regression analysis ; Regression models</subject><ispartof>arXiv.org, 2018-12</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2092785142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Jung, A</creatorcontrib><creatorcontrib>Vesselinova, N</creatorcontrib><title>Analysis of Network Lasso for Semi-Supervised Regression</title><title>arXiv.org</title><description>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</description><subject>Clustering</subject><subject>Empirical analysis</subject><subject>Error analysis</subject><subject>Machine learning</subject><subject>Message passing</subject><subject>Network analysis</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcMxLzKkszixWyE9T8EstKc8vylbwSSwuzldIyy9SCE7NzdQNLi1ILSrLLE5NUQhKTS9KLS7OzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUVAw4vjjQwsjcwtTA1NjIyJUwUARBQ2Hw</recordid><startdate>20181227</startdate><enddate>20181227</enddate><creator>Jung, A</creator><creator>Vesselinova, N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181227</creationdate><title>Analysis of Network Lasso for Semi-Supervised Regression</title><author>Jung, A ; Vesselinova, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927851423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clustering</topic><topic>Empirical analysis</topic><topic>Error analysis</topic><topic>Machine learning</topic><topic>Message passing</topic><topic>Network analysis</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>online_resources</toplevel><creatorcontrib>Jung, A</creatorcontrib><creatorcontrib>Vesselinova, N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, A</au><au>Vesselinova, N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analysis of Network Lasso for Semi-Supervised Regression</atitle><jtitle>arXiv.org</jtitle><date>2018-12-27</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We apply network Lasso to semi-supervised regression problems involving network structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of sufficiently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum flow problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092785142
source Publicly Available Content Database
subjects Clustering
Empirical analysis
Error analysis
Machine learning
Message passing
Network analysis
Regression analysis
Regression models
title Analysis of Network Lasso for Semi-Supervised Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analysis%20of%20Network%20Lasso%20for%20Semi-Supervised%20Regression&rft.jtitle=arXiv.org&rft.au=Jung,%20A&rft.date=2018-12-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092785142%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20927851423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092785142&rft_id=info:pmid/&rfr_iscdi=true