Loading…
A Swarming Approach to Optimize the One-hop Delay in Smart Driving Inter-platoon Communications
In this paper, we propose a swarming approach and optimize the one-hop delay for interplatoon communications through adjusting the minimum contention window size of each backbone vehicle in two steps. In the first step, we first set a small enough average one-hop delay as the initial optimization go...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a swarming approach and optimize the one-hop delay for interplatoon communications through adjusting the minimum contention window size of each backbone vehicle in two steps. In the first step, we first set a small enough average one-hop delay as the initial optimization goal and then propose a swarming approach to find a minimum average one-hop delay for inter-platoon communications through adjusting the minimum contention window of each backbone vehicle iteratively. In the second step, we first set the minimum average one-hop delay found in the first step as the initial optimization goal and then adopt the swarming approach again to get the one-hop delay of each backbone vehicle balance to the minimum average one-hop delay. The optimal minimum contention window sizes that get the one-hop delay of each backbone vehicle balance to the minimum average one-hop delay are obtained after the second step. The simulation results indicate that the one-hop delay is optimized and the other performance metrics including end-to-end delay, one-hop throughput and transmission probability are presented by using the optimal minimum contention window sizes. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1807.07301 |